Discrete Chebyshev polynomials

From HandWiki
Revision as of 18:50, 6 February 2024 by Rtexter1 (talk | contribs) (simplify)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, discrete Chebyshev polynomials, or Gram polynomials, are a type of discrete orthogonal polynomials used in approximation theory, introduced by Pafnuty Chebyshev[1] and rediscovered by Gram.[2] They were later found to be applicable to various algebraic properties of spin angular momentum.

Elementary Definition

The discrete Chebyshev polynomial [math]\displaystyle{ t^N_n(x) }[/math] is a polynomial of degree n in x, for [math]\displaystyle{ n = 0, 1, 2,\ldots, N -1 }[/math], constructed such that two polynomials of unequal degree are orthogonal with respect to the weight function [math]\displaystyle{ w(x) = \sum_{r = 0}^{N-1} \delta(x-r), }[/math] with [math]\displaystyle{ \delta(\cdot) }[/math] being the Dirac delta function. That is, [math]\displaystyle{ \int_{-\infty}^{\infty} t^N_n(x) t^N_m (x) w(x) \, dx = 0 \quad \text{ if } \quad n \ne m . }[/math]

The integral on the left is actually a sum because of the delta function, and we have, [math]\displaystyle{ \sum_{r = 0}^{N-1} t^N_n(r) t^N_m (r) = 0 \quad \text{ if }\quad n \ne m. }[/math]

Thus, even though [math]\displaystyle{ t^N_n(x) }[/math] is a polynomial in [math]\displaystyle{ x }[/math], only its values at a discrete set of points, [math]\displaystyle{ x = 0, 1, 2, \ldots, N-1 }[/math] are of any significance. Nevertheless, because these polynomials can be defined in terms of orthogonality with respect to a nonnegative weight function, the entire theory of orthogonal polynomials is applicable. In particular, the polynomials are complete in the sense that [math]\displaystyle{ \sum_{n = 0}^{N-1} t^N_n(r) t^N_n (s) = 0 \quad \text{ if }\quad r \ne s. }[/math]

Chebyshev chose the normalization so that [math]\displaystyle{ \sum_{r = 0}^{N-1} t^N_n(r) t^N_n (r) = \frac{N}{2n+1} \prod_{k=1}^n (N^2 - k^2). }[/math]

This fixes the polynomials completely along with the sign convention, [math]\displaystyle{ t^N_n(N - 1) \gt 0 }[/math].

If the independent variable is linearly scaled and shifted so that the end points assume the values [math]\displaystyle{ -1 }[/math] and [math]\displaystyle{ 1 }[/math], then as [math]\displaystyle{ N \to \infty }[/math], [math]\displaystyle{ t^N_n(\cdot) \to P_n(\cdot) }[/math] times a constant, where [math]\displaystyle{ P_n }[/math] is the Legendre polynomial.

Advanced Definition

Let f be a smooth function defined on the closed interval [−1, 1], whose values are known explicitly only at points xk := −1 + (2k − 1)/m, where k and m are integers and 1 ≤ km. The task is to approximate f as a polynomial of degree n < m. Consider a positive semi-definite bilinear form [math]\displaystyle{ \left(g,h\right)_d:=\frac{1}{m}\sum_{k=1}^{m}{g(x_k)h(x_k)}, }[/math] where g and h are continuous on [−1, 1] and let [math]\displaystyle{ \left\|g\right\|_d:=(g,g)^{1/2}_{d} }[/math] be a discrete semi-norm. Let [math]\displaystyle{ \varphi_k }[/math] be a family of polynomials orthogonal to each other [math]\displaystyle{ \left( \varphi_k, \varphi_i\right)_d = 0 }[/math] whenever i is not equal to k. Assume all the polynomials [math]\displaystyle{ \varphi_k }[/math] have a positive leading coefficient and they are normalized in such a way that [math]\displaystyle{ \left\|\varphi_k\right\|_d=1. }[/math]

The [math]\displaystyle{ \varphi_k }[/math] are called discrete Chebyshev (or Gram) polynomials.[3]

Connection with Spin Algebra

The discrete Chebyshev polynomials have surprising connections to various algebraic properties of spin: spin transition probabilities,[4] the probabilities for observations of the spin in Bohm's spin-s version of the Einstein-Podolsky-Rosen experiment,[5] and Wigner functions for various spin states.[6]

Specifically, the polynomials turn out to be the eigenvectors of the absolute square of the rotation matrix (the Wigner D-matrix). The associated eigenvalue is the Legendre polynomial [math]\displaystyle{ P_{\ell}(\cos \theta) }[/math], where [math]\displaystyle{ \theta }[/math] is the rotation angle. In other words, if [math]\displaystyle{ d_{mm'} = \langle j,m|e^{-i\theta J_y}|j,m'\rangle, }[/math] where [math]\displaystyle{ |j,m\rangle }[/math] are the usual angular momentum or spin eigenstates, and [math]\displaystyle{ F_{mm'}(\theta) = |d_{mm'}(\theta)|^2 , }[/math] then [math]\displaystyle{ \sum_{m' = -j}^j F_{mm'}(\theta)\, f^j_{\ell}(m')= P_{\ell}(\cos\theta) f^j_{\ell}(m) . }[/math]

The eigenvectors [math]\displaystyle{ f^j_{\ell}(m) }[/math] are scaled and shifted versions of the Chebyshev polynomials. They are shifted so as to have support on the points [math]\displaystyle{ m = -j, -j + 1, \ldots, j }[/math] instead of [math]\displaystyle{ r = 0, 1, \ldots, N }[/math] for [math]\displaystyle{ t^N_n(r) }[/math] with [math]\displaystyle{ N }[/math] corresponding to [math]\displaystyle{ 2j+1 }[/math], and [math]\displaystyle{ n }[/math] corresponding to [math]\displaystyle{ \ell }[/math]. In addition, the [math]\displaystyle{ f^j_{\ell}(m) }[/math] can be scaled so as to obey other normalization conditions. For example, one could demand that they satisfy [math]\displaystyle{ \frac{1}{2j+1} \sum_{m=-j}^{j} f^j_{\ell}(m) f^j_{\ell'}(m) = \delta_{\ell\ell'}, }[/math] along with [math]\displaystyle{ f^j_{\ell}(j) \gt 0 }[/math].

References

  1. Chebyshev, P. (1864), "Sur l'interpolation", Zapiski Akademii Nauk 4, Oeuvres Vol 1 p. 539–560, https://archive.org/stream/oeuvresdepltche01chebrich#page/n551/mode/2up 
  2. Gram, J. P. (1883), "Ueber die Entwickelung reeller Functionen in Reihen mittelst der Methode der kleinsten Quadrate" (in German), Journal für die reine und angewandte Mathematik 1883 (94): 41–73, doi:10.1515/crll.1883.94.41, http://resolver.sub.uni-goettingen.de/purl?GDZPPN002158604 
  3. R.W. Barnard; G. Dahlquist; K. Pearce; L. Reichel; K.C. Richards (1998). "Gram Polynomials and the Kummer Function". Journal of Approximation Theory 94: 128–143. doi:10.1006/jath.1998.3181. 
  4. A. Meckler (1958). "Majorana formula". Physical Review 111 (6): 1447. doi:10.1103/PhysRev.111.1447. Bibcode1958PhRv..111.1447M. 
  5. N. D. Mermin; G. M. Schwarz (1982). "Joint distributions and local realism in the higher-spin Einstein-Podolsky-Rosen experiment". Foundations of Physics 12 (2): 101. doi:10.1007/BF00736844. Bibcode1982FoPh...12..101M. 
  6. Anupam Garg (2022). "The discrete Chebyshev–Meckler–Mermin–Schwarz polynomials and spin algebra". Journal of Mathematical Physics 63 (7): 072101. doi:10.1063/5.0094575. Bibcode2022JMP....63g2101G.