Böhmer integral

From HandWiki
Revision as of 19:05, 6 February 2024 by John Stpola (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, a Böhmer integral is an integral introduced by (Böhmer 1939) generalizing the Fresnel integrals. There are two versions, given by [math]\displaystyle{ \begin{align} \operatorname{C}(x,\alpha) &= \int_x^\infty t^{\alpha-1} \cos(t) \, dt \\[1ex] \operatorname{S}(x,\alpha) &= \int_x^\infty t^{\alpha-1} \sin(t) \, dt \end{align} }[/math]

Consequently, Fresnel integrals can be expressed in terms of the Böhmer integrals as [math]\displaystyle{ \begin{align} \operatorname{S}(y) &= \frac1{2}-\frac1{\sqrt{2\pi}}\cdot\operatorname{S}\left(\frac1{2},y^2\right) \\[1ex] \operatorname{C}(y) &= \frac1{2}-\frac1{\sqrt{2\pi}}\cdot\operatorname{C}\left(\frac1{2},y^2\right) \end{align} }[/math]

The sine integral and cosine integral can also be expressed in terms of the Böhmer integrals [math]\displaystyle{ \begin{align} \operatorname{Si}(x) &= \frac{\pi}{2} - \operatorname{S}(x,0) \\[1ex] \operatorname{Ci}(x) &= \frac{\pi}{2} -\operatorname{C}(x,0) \end{align} }[/math]

References