Kolmogorov's criterion
In probability theory, Kolmogorov's criterion, named after Andrey Kolmogorov, is a theorem giving a necessary and sufficient condition for a Markov chain or continuous-time Markov chain to be stochastically identical to its time-reversed version.
Discrete-time Markov chains
The theorem states that an irreducible, positive recurrent, aperiodic Markov chain with transition matrix P is reversible if and only if its stationary Markov chain satisfies[1]
- [math]\displaystyle{ p_{j_1 j_2} p_{j_2 j_3} \cdots p_{j_{n-1} j_n} p_{j_n j_1} = p_{j_1 j_n} p_{j_n j_{n-1}} \cdots p_{j_3 j_2} p_{j_2 j_1} }[/math]
for all finite sequences of states
- [math]\displaystyle{ j_1, j_2, \ldots, j_n \in S . }[/math]
Here pij are components of the transition matrix P, and S is the state space of the chain.
Example
Consider this figure depicting a section of a Markov chain with states i, j, k and l and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when traversing through any closed loop must be equal, so the product around the loop i to j to l to k returning to i must be equal to the loop the other way round,
- [math]\displaystyle{ p_{ij}p_{jl}p_{lk}p_{ki} = p_{ik}p_{kl}p_{lj}p_{ji}. }[/math]
Proof
Let [math]\displaystyle{ X }[/math] be the Markov chain and denote by [math]\displaystyle{ \pi }[/math] its stationary distribution (such exists since the chain is positive recurrent).
If the chain is reversible, the equality follows from the relation [math]\displaystyle{ p_{ji}=\frac{\pi_i p_{ij}}{\pi_j} }[/math].
Now assume that the equality is fulfilled. Fix states [math]\displaystyle{ s }[/math] and [math]\displaystyle{ t }[/math]. Then
- [math]\displaystyle{ \text{P}(X_{n+1}=t,X_{n}=i_n,\ldots,X_{0}=s|X_0=s) }[/math][math]\displaystyle{ = p_{si_1}p_{i_1i_2}\cdots p_{i_nt} }[/math][math]\displaystyle{ =\frac{ p_{st}}{p_{ts}}p_{ti_n}p_{i_{n}i_{n-1}}\cdots p_{i_1s} }[/math][math]\displaystyle{ =\frac{p_{st}}{p_{ts}}\text{P}(X_{n+1} }[/math][math]\displaystyle{ =s,X_{n} }[/math][math]\displaystyle{ =i_1,\ldots,X_{0}=t|X_0=t) }[/math].
Now sum both sides of the last equality for all possible ordered choices of [math]\displaystyle{ n }[/math] states [math]\displaystyle{ i_1,i_2,\ldots,i_n }[/math]. Thus we obtain [math]\displaystyle{ p_{st}^{(n)}=\frac{p_{st}}{p_{ts}}p_{ts}^{(n)} }[/math] so [math]\displaystyle{ \frac{p_{st}^{(n)}}{p_{ts}^{(n)}}=\frac{p_{st}}{p_{ts}} }[/math]. Send [math]\displaystyle{ n }[/math] to [math]\displaystyle{ \infty }[/math] on the left side of the last. From the properties of the chain follows that [math]\displaystyle{ \lim_{n\to\infty}p_{ij}^{(n)}=\pi_j }[/math], hence [math]\displaystyle{ \frac{\pi_t}{\pi_s}=\frac{p_{st}}{p_{ts}} }[/math] which shows that the chain is reversible.
Continuous-time Markov chains
The theorem states that a continuous-time Markov chain with transition rate matrix Q is, under any invariant probability vector, reversible if and only if its transition probabilities satisfy[1]
- [math]\displaystyle{ q_{j_1 j_2} q_{j_2 j_3} \cdots q_{j_{n-1} j_n} q_{j_n j_1} = q_{j_1 j_n} q_{j_n j_{n-1}} \cdots q_{j_3 j_2} q_{j_2 j_1} }[/math]
for all finite sequences of states
- [math]\displaystyle{ j_1, j_2, \ldots, j_n \in S . }[/math]
The proof for continuous-time Markov chains follows in the same way as the proof for discrete-time Markov chains.
References
- ↑ 1.0 1.1 Kelly, Frank P. (1979). Reversibility and Stochastic Networks. Wiley, Chichester. pp. 21–25. http://www.statslab.cam.ac.uk/~frank/BOOKS/book/whole.pdf.
Original source: https://en.wikipedia.org/wiki/Kolmogorov's criterion.
Read more |