Quillen–Lichtenbaum conjecture

From HandWiki
Revision as of 20:22, 6 February 2024 by Nautica (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, the Quillen–Lichtenbaum conjecture is a conjecture relating étale cohomology to algebraic K-theory introduced by (Quillen 1975), who was inspired by earlier conjectures of (Lichtenbaum 1973). (Kahn 1997) and (Rognes Weibel) proved the Quillen–Lichtenbaum conjecture at the prime 2 for some number fields. Voevodsky, using some important results of Markus Rost, has proved the Bloch–Kato conjecture, which implies the Quillen–Lichtenbaum conjecture for all primes.

Statement

The conjecture in Quillen's original form states that if A is a finitely-generated algebra over the integers and l is prime, then there is a spectral sequence analogous to the Atiyah–Hirzebruch spectral sequence, starting at

[math]\displaystyle{ E_2^{pq}=H^p_{\text{etale}}(\text{Spec }A[\ell^{-1}], Z_\ell(-q/2)), }[/math] (which is understood to be 0 if q is odd)

and abutting to

[math]\displaystyle{ K_{-p-q}A\otimes Z_\ell }[/math]

for −p − q > 1 + dim A.

K-theory of the integers

Assuming the Quillen–Lichtenbaum conjecture and the Vandiver conjecture, the K-groups of the integers, Kn(Z), are given by:

  • 0 if n = 0 mod 8 and n > 0, Z if n = 0
  • Z ⊕ Z/2 if n = 1 mod 8 and n > 1, Z/2 if n = 1.
  • Z/ckZ/2 if n = 2 mod 8
  • Z/8dk if n = 3 mod 8
  • 0 if n = 4 mod 8
  • Z if n = 5 mod 8
  • Z/ck if n = 6 mod 8
  • Z/4dk if n = 7 mod 8

where ck/dk is the Bernoulli number B2k/k in lowest terms and n is 4k − 1 or 4k − 2 (Weibel 2005).

References