Pseudo-Boolean function
In mathematics and optimization, a pseudo-Boolean function is a function of the form
- [math]\displaystyle{ f: \mathbf{B}^n \to \R, }[/math]
where B = {0, 1} is a Boolean domain and n is a nonnegative integer called the arity of the function. A Boolean function is then a special case, where the values are also restricted to 0 or 1.
Representations
Any pseudo-Boolean function can be written uniquely as a multi-linear polynomial:[1][2]
- [math]\displaystyle{ f(\boldsymbol{x}) = a + \sum_i a_ix_i + \sum_{i\lt j}a_{ij}x_ix_j + \sum_{i\lt j\lt k}a_{ijk}x_ix_jx_k + \ldots }[/math]
The degree of the pseudo-Boolean function is simply the degree of the polynomial in this representation.
In many settings (e.g., in Fourier analysis of pseudo-Boolean functions), a pseudo-Boolean function is viewed as a function [math]\displaystyle{ f }[/math] that maps [math]\displaystyle{ \{-1,1\}^n }[/math] to [math]\displaystyle{ \mathbb{R} }[/math]. Again in this case we can uniquely write [math]\displaystyle{ f }[/math] as a multi-linear polynomial: [math]\displaystyle{ f(x)= \sum_{I\subseteq [n]}\hat{f}(I)\prod_{i\in I}x_i, }[/math] where [math]\displaystyle{ \hat{f}(I) }[/math] are Fourier coefficients of [math]\displaystyle{ f }[/math] and [math]\displaystyle{ [n]=\{1,...,n\} }[/math].
Optimization
Minimizing (or, equivalently, maximizing) a pseudo-Boolean function is NP-hard. This can easily be seen by formulating, for example, the maximum cut problem as maximizing a pseudo-Boolean function.[3]
Submodularity
The submodular set functions can be viewed as a special class of pseudo-Boolean functions, which is equivalent to the condition
- [math]\displaystyle{ f(\boldsymbol{x}) + f(\boldsymbol{y}) \ge f(\boldsymbol{x} \wedge \boldsymbol{y}) + f(\boldsymbol{x} \vee \boldsymbol{y}), \; \forall \boldsymbol{x}, \boldsymbol{y}\in \mathbf{B}^n\,. }[/math]
This is an important class of pseudo-boolean functions, because they can be minimized in polynomial time. Note that minimization of a submodular function is a polynomially solvable problem independent on the presentation form, for e.g. pesudo-Boolean polynomials, opposite to maximization of a submodular function which is NP-hard, Alexander Schrijver (2000).
Roof Duality
If f is a quadratic polynomial, a concept called roof duality can be used to obtain a lower bound for its minimum value.[3] Roof duality may also provide a partial assignment of the variables, indicating some of the values of a minimizer to the polynomial. Several different methods of obtaining lower bounds were developed only to later be shown to be equivalent to what is now called roof duality.[3]
Quadratizations
If the degree of f is greater than 2, one can always employ reductions to obtain an equivalent quadratic problem with additional variables. One possible reduction is
- [math]\displaystyle{ \displaystyle -x_1x_2x_3=\min_{z\in\mathbf{B}}z(2-x_1-x_2-x_3) }[/math]
There are other possibilities, for example,
- [math]\displaystyle{ \displaystyle -x_1x_2x_3=\min_{z\in\mathbf{B}}z(-x_1+x_2+x_3)-x_1x_2-x_1x_3+x_1. }[/math]
Different reductions lead to different results. Take for example the following cubic polynomial:[4]
- [math]\displaystyle{ \displaystyle f(\boldsymbol{x})=-2x_1+x_2-x_3+4x_1x_2+4x_1x_3-2x_2x_3-2x_1x_2x_3. }[/math]
Using the first reduction followed by roof duality, we obtain a lower bound of -3 and no indication on how to assign the three variables. Using the second reduction, we obtain the (tight) lower bound of -2 and the optimal assignment of every variable (which is [math]\displaystyle{ {(0,1,1)} }[/math]).
Polynomial Compression Algorithms
Consider a pseudo-Boolean function [math]\displaystyle{ f }[/math] as a mapping from [math]\displaystyle{ \{-1,1\}^n }[/math] to [math]\displaystyle{ \mathbb{R} }[/math]. Then [math]\displaystyle{ f(x)= \sum_{I\subseteq [n]}\hat{f}(I)\prod_{i\in I}x_i. }[/math] Assume that each coefficient [math]\displaystyle{ \hat{f}(I) }[/math] is integral. Then for an integer [math]\displaystyle{ k }[/math] the problem P of deciding whether [math]\displaystyle{ f(x) }[/math] is more or equal to [math]\displaystyle{ k }[/math] is NP-complete. It is proved in [5] that in polynomial time we can either solve P or reduce the number of variables to [math]\displaystyle{ O(k^2\log k). }[/math] Let [math]\displaystyle{ r }[/math] be the degree of the above multi-linear polynomial for [math]\displaystyle{ f }[/math]. Then [5] proved that in polynomial time we can either solve P or reduce the number of variables to [math]\displaystyle{ r(k-1) }[/math].
See also
Notes
- ↑ Hammer, P.L.; Rosenberg, I.; Rudeanu, S. (1963). "On the determination of the minima of pseudo-Boolean functions" (in ro). Studii și cercetări matematice (14): 359–364. ISSN 0039-4068.
- ↑ Hammer, Peter L.; Rudeanu, Sergiu (1968). Boolean Methods in Operations Research and Related Areas. Springer. ISBN 978-3-642-85825-3.
- ↑ 3.0 3.1 3.2 Boros, E.; Hammer, P. L. (2002). "Pseudo-Boolean Optimization". Discrete Applied Mathematics 123 (1–3): 155–225. doi:10.1016/S0166-218X(01)00341-9. http://orbi.ulg.ac.be/handle/2268/202427.
- ↑ Kahl, F.; Strandmark, P. (2011). "Generalized Roof Duality for Pseudo-Boolean Optimization". International Conference on Computer Vision. http://www.maths.lth.se/vision/publdb/reports/pdf/kahl-strandmark-iccv-11.pdf.
- ↑ 5.0 5.1 Crowston, R.; Fellows, M.; Gutin, G.; Jones, M.; Rosamond, F.; Thomasse, S.; Yeo, A. (2011). "Simultaneously Satisfying Linear Equations Over GF(2): MaxLin2 and Max-r-Lin2 Parameterized Above Average.". Proc. Of FSTTCS 2011. Bibcode: 2011arXiv1104.1135C.
References
- Ishikawa, H. (2011). "Transformation of general binary MRF minimization to the first order case". IEEE Transactions on Pattern Analysis and Machine Intelligence 33 (6): 1234–1249. doi:10.1109/tpami.2010.91. PMID 20421673.
- O'Donnell, Ryan (2008). "Some topics in analysis of Boolean functions". ECCC. ISSN 1433-8092. https://eccc.weizmann.ac.il/report/2008/055/.
- Rother, C.; Kolmogorov, V.; Lempitsky, V.; Szummer, M. (2007). "Optimizing Binary MRFs via Extended Roof Duality". Conference on Computer Vision and Pattern Recognition. http://research.microsoft.com/pubs/67978/cvpr07-QPBOpi.pdf.
- Schrijver, Alexander (November 2000). "A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time". Journal of Combinatorial Theory. B 80 (2): 346-355. doi:10.1006/jctb.2000.1989.
Original source: https://en.wikipedia.org/wiki/Pseudo-Boolean function.
Read more |