C-group

From HandWiki
Revision as of 16:46, 8 February 2024 by Rtexter1 (talk | contribs) (update)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Class of mathematical groups

In mathematical group theory, a C-group is a group such that the centralizer of any involution has a normal Sylow 2-subgroup. They include as special cases CIT-groups where the centralizer of any involution is a 2-group, and TI-groups where any Sylow 2-subgroups have trivial intersection.

The simple C-groups were determined by (Suzuki 1965), and his classification is summarized by (Gorenstein 1980). The classification of C-groups was used in Thompson's classification of N-groups. The finite non-abelian simple C-groups are

  • the projective special linear groups PSL2(p) for p a Fermat or Mersenne prime, and p≥5
  • the projective special linear groups PSL2(9)
  • the projective special linear groups PSL2(2n) for n≥2
  • the projective special linear groups PSL3(2n) for n≥1
  • the projective special unitary groups PSU3(2n) for n≥2
  • the Suzuki groups Sz(22n+1) for n≥1

CIT-groups

The C-groups include as special cases the CIT-groups, that are groups in which the centralizer of any involution is a 2-group. These were classified by Suzuki (1961, 1962), and the finite non-abelian simple ones consist of the finite non-abelian simple C-groups other than PSL3(2n) and PSU3(2n) for n≥2. The ones whose Sylow 2-subgroups are elementary abelian were classified in a paper of (Burnside 1899), which was forgotten for many years until rediscovered by Feit in 1970.

TI-groups

The C-groups include as special cases the TI-groups (trivial intersection groups), that are groups in which any two Sylow 2-subgroups have trivial intersection. These were classified by Suzuki (1964), and the simple ones are of the form PSL2(q), PSU3(q), Sz(q) for q a power of 2.

References