Affine q-Krawtchouk polynomials
From HandWiki
In mathematics, the affine q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Carlitz and Hodges. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Definition
The polynomials are given in terms of basic hypergeometric functions by [1]
- [math]\displaystyle{ K^{\text{aff}}_n (q^{-x};p;N;q) = {}_3\phi_2\left( \begin{matrix} q^{-n},0,q^{-x}\\ pq,q^{-N}\end{matrix};q,q\right), \qquad n=0,1,2,\ldots, N. }[/math]
Relation to other polynomials
affine q-Krawtchouk polynomials → little q-Laguerre polynomials:
- [math]\displaystyle{ \lim_{a \to 1}=K_n^\text{aff}(q^{x-N};p,N\mid q)=p_n(q^x;p,q) }[/math].
References
- ↑ Roelof Koekoek, Hypergeometric Orthogonal Polynomials and its q-Analogues, p. 501, Springer, 2010
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Affine q-Krawtchouk polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, http://dlmf.nist.gov/18
- Stanton, Dennis (1981), "Three addition theorems for some q-Krawtchouk polynomials", Geometriae Dedicata 10 (1): 403–425, doi:10.1007/BF01447435, ISSN 0046-5755
Original source: https://en.wikipedia.org/wiki/Affine q-Krawtchouk polynomials.
Read more |