Cross Gramian

From HandWiki
Revision as of 17:07, 8 February 2024 by MedAI (talk | contribs) (add)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In control theory, the cross Gramian ([math]\displaystyle{ W_X }[/math], also referred to by [math]\displaystyle{ W_{CO} }[/math]) is a Gramian matrix used to determine how controllable and observable a linear system is.[1][2] For the stable time-invariant linear system

[math]\displaystyle{ \dot{x} = A x + B u \, }[/math]
[math]\displaystyle{ y = C x \, }[/math]

the cross Gramian is defined as:

[math]\displaystyle{ W_X := \int_0^\infty e^{At} BC e^{At} dt \, }[/math]

and thus also given by the solution to the Sylvester equation:

[math]\displaystyle{ A W_X + W_X A = -BC \, }[/math]

This means the cross Gramian is not strictly a Gramian matrix, since it is generally neither positive semi-definite nor symmetric.

The triple [math]\displaystyle{ (A,B,C) }[/math] is controllable and observable, and hence minimal, if and only if the matrix [math]\displaystyle{ W_X }[/math] is nonsingular, (i.e. [math]\displaystyle{ W_X }[/math] has full rank, for any [math]\displaystyle{ t \gt 0 }[/math]).

If the associated system [math]\displaystyle{ (A,B,C) }[/math] is furthermore symmetric, such that there exists a transformation [math]\displaystyle{ J }[/math] with

[math]\displaystyle{ AJ = JA^T \, }[/math]
[math]\displaystyle{ B = JC^T \, }[/math]

then the absolute value of the eigenvalues of the cross Gramian equal Hankel singular values:[3]

[math]\displaystyle{ |\lambda(W_X)| = \sqrt{\lambda(W_C W_O)}. \, }[/math]

Thus the direct truncation of the Eigendecomposition of the cross Gramian allows model order reduction (see [1]) without a balancing procedure as opposed to balanced truncation.

The cross Gramian has also applications in decentralized control, sensitivity analysis, and the inverse scattering transform.[4][5]

See also

References

  1. Fortuna, Luigi; Frasca, Mattia (2012). Optimal and Robust Control: Advanced Topics with MATLAB. CRC Press. pp. 83–. ISBN 9781466501911. https://books.google.com/books?id=WM3OzyHKlD4C&pg=PA83. Retrieved 29 April 2013. 
  2. Antoulas, Athanasios C. (2005). Approximation of Large-Scale Dynamical Systems. SIAM. doi:10.1137/1.9780898718713. ISBN 9780898715293. 
  3. Fernando, K.; Nicholson, H. (February 1983). "On the structure of balanced and other principal representations of SISO systems". IEEE Transactions on Automatic Control 28 (2): 228–231. doi:10.1109/tac.1983.1103195. ISSN 0018-9286. 
  4. Himpe, C. (2018). "emgr -- The Empirical Gramian Framework". Algorithms 11 (7): 91. doi:10.3390/a11070091. 
  5. Blower, G.; Newsham, S. (2021). "Tau functions for linear systems". Operator Theory Advances and Applications: IWOTA Lisbon 2019. https://eprints.lancs.ac.uk/id/eprint/142050/1/GBlowerIWOTAconferencepaperrevised.pdf.