Isotypic component

From HandWiki
Revision as of 17:17, 8 February 2024 by Jworkorg (talk | contribs) (update)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The isotypic component of weight [math]\displaystyle{ \lambda }[/math] of a Lie algebra module is the sum of all submodules which are isomorphic to the highest weight module with weight [math]\displaystyle{ \lambda }[/math].

Definition

[math]\displaystyle{ V = \bigoplus_{i=1}^N V_i }[/math].
  • Each finite-dimensional irreducible representation of [math]\displaystyle{ \mathfrak{g} }[/math] is uniquely identified (up to isomorphism) by its highest weight
[math]\displaystyle{ \forall i \in \{1,\ldots,N\} \,\exists \lambda \in P(\mathfrak{g}) : V_i \simeq M_\lambda }[/math], where [math]\displaystyle{ M_\lambda }[/math] denotes the highest weight module with highest weight [math]\displaystyle{ \lambda }[/math].
  • In the decomposition of [math]\displaystyle{ V }[/math], a certain isomorphism class might appear more than once, hence
[math]\displaystyle{ V \simeq \bigoplus_{\lambda \in P(\mathfrak{g})} (\bigoplus_{i=1}^{d_\lambda} M_{\lambda}) }[/math].

This defines the isotypic component of weight [math]\displaystyle{ \lambda }[/math] of [math]\displaystyle{ V }[/math]: [math]\displaystyle{ \lambda(V) := \bigoplus_{i=1}^{d_\lambda} V_i \simeq \mathbb{C}^{d_\lambda} \otimes M_{\lambda} }[/math] where [math]\displaystyle{ d_\lambda }[/math] is maximal.

See also

References