Johnson scheme

From HandWiki
Revision as of 18:27, 8 February 2024 by John Stpola (talk | contribs) (change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, the Johnson scheme, named after Selmer M. Johnson, is also known as the triangular association scheme. It consists of the set of all binary vectors X of length and weight n, such that [math]\displaystyle{ v=\left|X\right|=\binom{\ell}{n} }[/math].[1][2][3] Two vectors xy ∈ X are called ith associates if dist(xy) = 2i for i = 0, 1, ..., n. The eigenvalues are given by

[math]\displaystyle{ p_{i}\left(k\right)=E_{i}\left(k\right), }[/math]
[math]\displaystyle{ q_{k}\left(i\right)=\frac{\mu_{k}}{v_{i}}E_{i}\left(k\right), }[/math]

where

[math]\displaystyle{ \mu_{i}=\frac{\ell-2i+1}{\ell-i+1}\binom{\ell}{i}, }[/math]

and Ek(x) is an Eberlein polynomial defined by

[math]\displaystyle{ E_{k}\left(x\right)=\sum_{j=0}^{k}(-1)^{j}\binom{x}{j} \binom{n-x}{k-j}\binom{\ell-n-x}{k-j},\qquad k=0,\ldots,n. }[/math]

References

  1. P. Delsarte and V. I. Levenshtein, “Association schemes and coding theory,“ IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2477–2504, 1998.
  2. P. Camion, "Codes and Association Schemes: Basic Properties of Association Schemes Relevant to Coding," in Handbook of Coding Theory, V. S. Pless and W. C. Huffman, Eds., Elsevier, The Netherlands, 1998.
  3. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier, New York, 1978.