Lichnerowicz conjecture
From HandWiki
In mathematics, the Lichnerowicz conjecture is a generalization of a conjecture introduced by Lichnerowicz (1944). Lichnerowicz's original conjecture was that locally harmonic 4-manifolds are locally symmetric, and was proved by (Walker 1949). The Lichnerowicz conjecture usually refers to the generalization that locally harmonic manifolds are flat or rank-1 locally symmetric. It has been proven true for compact manifolds with fundamental groups that are finite groups (Szabó 1990) but counterexamples exist in seven or more dimensions in the non-compact case (Damek Ricci)
References
- Damek, Ewa; Ricci, Fulvio (1992), "A class of nonsymmetric harmonic Riemannian spaces", Bulletin of the American Mathematical Society, New Series 27 (1): 139–142, doi:10.1090/S0273-0979-1992-00293-8
- Lichnerowicz, André (1944), "Sur les espaces riemanniens complètement harmoniques", Bulletin de la Société Mathématique de France 72: 146–168, ISSN 0037-9484, http://www.numdam.org/item?id=BSMF_1944__72__146_0
- Szabó, Z. I. (1990), "The Lichnerowicz conjecture on harmonic manifolds", Journal of Differential Geometry 31 (1): 1–28, ISSN 0022-040X, http://projecteuclid.org/getRecord?id=euclid.jdg/1214444087
- Walker, A. G. (1949), "On Lichnerowicz's conjecture for harmonic 4-spaces", Journal of the London Mathematical Society, Second Series 24: 21–28, doi:10.1112/jlms/s1-24.1.21, ISSN 0024-6107
Original source: https://en.wikipedia.org/wiki/Lichnerowicz conjecture.
Read more |