Hautus lemma
In control theory and in particular when studying the properties of a linear time-invariant system in state space form, the Hautus lemma (after Malo L. J. Hautus), also commonly known as the Popov-Belevitch-Hautus test or PBH test,[1][2] can prove to be a powerful tool. A special case of this result appeared first in 1963 in a paper by Elmer G. Gilbert,[1] and was later expanded to the current PHB test with contributions by Vasile M. Popov in 1966,[3][4] Vitold Belevitch in 1968,[5] and Malo Hautus in 1969,[5] who emphasized its applicability in proving results for linear time-invariant systems.
Statement
There exist multiple forms of the lemma:
Hautus Lemma for controllability
The Hautus lemma for controllability says that given a square matrix [math]\displaystyle{ \mathbf{A}\in M_n(\Re) }[/math] and a [math]\displaystyle{ \mathbf{B}\in M_{n\times m}(\Re) }[/math] the following are equivalent:
- The pair [math]\displaystyle{ (\mathbf{A},\mathbf{B}) }[/math] is controllable
- For all [math]\displaystyle{ \lambda\in\mathbb{C} }[/math] it holds that [math]\displaystyle{ \operatorname{rank}[\lambda \mathbf{I}-\mathbf{A},\mathbf{B}]=n }[/math]
- For all [math]\displaystyle{ \lambda\in\mathbb{C} }[/math] that are eigenvalues of [math]\displaystyle{ \mathbf{A} }[/math] it holds that [math]\displaystyle{ \operatorname{rank}[\lambda \mathbf{I}-\mathbf{A},\mathbf{B}]=n }[/math]
Hautus Lemma for stabilizability
The Hautus lemma for stabilizability says that given a square matrix [math]\displaystyle{ \mathbf{A}\in M_n(\Re) }[/math] and a [math]\displaystyle{ \mathbf{B}\in M_{n\times m}(\Re) }[/math] the following are equivalent:
- The pair [math]\displaystyle{ (\mathbf{A},\mathbf{B}) }[/math] is stabilizable
- For all [math]\displaystyle{ \lambda\in\mathbb{C} }[/math] that are eigenvalues of [math]\displaystyle{ \mathbf{A} }[/math] and for which [math]\displaystyle{ \Re(\lambda)\ge 0 }[/math] it holds that [math]\displaystyle{ \operatorname{rank}[\lambda \mathbf{I}-\mathbf{A},\mathbf{B}]=n }[/math]
Hautus Lemma for observability
The Hautus lemma for observability says that given a square matrix [math]\displaystyle{ \mathbf{A}\in M_n(\Re) }[/math] and a [math]\displaystyle{ \mathbf{C}\in M_{m\times n}(\Re) }[/math] the following are equivalent:
- The pair [math]\displaystyle{ (\mathbf{A},\mathbf{C}) }[/math] is observable.
- For all [math]\displaystyle{ \lambda\in\mathbb{C} }[/math] it holds that [math]\displaystyle{ \operatorname{rank}[\lambda \mathbf{I}-\mathbf{A};\mathbf{C}]=n }[/math]
- For all [math]\displaystyle{ \lambda\in\mathbb{C} }[/math] that are eigenvalues of [math]\displaystyle{ \mathbf{A} }[/math] it holds that [math]\displaystyle{ \operatorname{rank}[\lambda \mathbf{I}-\mathbf{A};\mathbf{C}]=n }[/math]
Hautus Lemma for detectability
The Hautus lemma for detectability says that given a square matrix [math]\displaystyle{ \mathbf{A}\in M_n(\Re) }[/math] and a [math]\displaystyle{ \mathbf{C}\in M_{m\times n}(\Re) }[/math] the following are equivalent:
- The pair [math]\displaystyle{ (\mathbf{A},\mathbf{C}) }[/math] is detectable
- For all [math]\displaystyle{ \lambda\in\mathbb{C} }[/math] that are eigenvalues of [math]\displaystyle{ \mathbf{A} }[/math] and for which [math]\displaystyle{ \Re(\lambda)\ge 0 }[/math] it holds that [math]\displaystyle{ \operatorname{rank}[\lambda \mathbf{I}-\mathbf{A};\mathbf{C}]=n }[/math]
References
- Sontag, Eduard D. (1998). Mathematical Control Theory: Deterministic Finite-Dimensional Systems.. New York: Springer. ISBN 0-387-98489-5.
- Zabczyk, Jerzy (1995). Mathematical Control Theory – An Introduction. Boston: Birkhauser. ISBN 3-7643-3645-5. https://archive.org/details/mathematicalcont0000zabc.
Notes
- ↑ 1.0 1.1 Hespanha, Joao (2018). Linear Systems Theory (Second ed.). Princeton University Press. ISBN 9780691179575.
- ↑ Bernstein, Dennis S. (2018). Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas (Revised and expanded ed.). Princeton University Press. ISBN 9780691151205.
- ↑ Popov, Vasile Mihai (1966). Hiperstabilitatea sistemelor automate. Editura Academiei Republicii Socialiste România.
- ↑ Popov, V.M. (1973). Hyperstability of Control Systems. Berlin: Springer-Verlag.
- ↑ 5.0 5.1 Belevitch, V. (1968). Classical Network Theory. San Francisco: Holden–Day.
Original source: https://en.wikipedia.org/wiki/Hautus lemma.
Read more |