Sub-Gaussian distribution

From HandWiki
Revision as of 22:21, 8 February 2024 by Wikisleeper (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Continuous probability distribution

In probability theory, a sub-Gaussian distribution, the distribution of a sub-Gaussian random variable, is a probability distribution with strong tail decay. More specifically, the tails of a sub-Gaussian distribution are dominated by (i.e. decay at least as fast as) the tails of a Gaussian. This property gives sub-Gaussian distributions their name.

Formally, the probability distribution of a random variable [math]\displaystyle{ X }[/math] is called sub-Gaussian if there is a positive constant C such that for every [math]\displaystyle{ t \geq 0 }[/math],

[math]\displaystyle{ \operatorname{P}(|X| \geq t) \leq 2 \exp{(-t^2/C^2)} }[/math].

Alternatively, a random variable is considered sub-Gaussian if its distribution function is upper bounded (up to a constant) by the distribution function of a Gaussian. Specifically, we say that [math]\displaystyle{ X }[/math] is sub-Gaussian if for all [math]\displaystyle{ s \geq 0 }[/math] we have that:

[math]\displaystyle{ P(|X| \geq s) \leq cP(|Z| \geq s), }[/math]

where [math]\displaystyle{ c\ge 0 }[/math] is constant and [math]\displaystyle{ Z }[/math] is a mean zero Gaussian random variable.[1]

Definitions

The sub-Gaussian norm of [math]\displaystyle{ X }[/math], denoted as [math]\displaystyle{ \Vert X \Vert_{gauss} }[/math], is defined by[math]\displaystyle{ \Vert X \Vert_{gauss} = \inf\left\{ c\gt 0 : \operatorname{E}\left[\exp{\left(\frac{X^2}{c^2}\right)}\right] \leq 2 \right\}, }[/math]which is the Orlicz norm of [math]\displaystyle{ X }[/math] generated by the Orlicz function [math]\displaystyle{ \Phi(u)=e^{u^2}-1. }[/math] By condition [math]\displaystyle{ (2) }[/math] below, sub-Gaussian random variables can be characterized as those random variables with finite sub-Gaussian norm.

Sub-Gaussian properties

Let [math]\displaystyle{ X }[/math] be a random variable. The following conditions are equivalent:

  1. [math]\displaystyle{ \operatorname{P}(|X| \geq t) \leq 2 \exp{(-t^2/K_1^2)} }[/math] for all [math]\displaystyle{ t \geq 0 }[/math], where [math]\displaystyle{ K_1 }[/math] is a positive constant;
  2. [math]\displaystyle{ \operatorname{E}[\exp{(X^2/K_2^2)}] \leq 2 }[/math], where [math]\displaystyle{ K_2 }[/math] is a positive constant;
  3. [math]\displaystyle{ \operatorname{E} |X|^p \leq 2K_3^p \Gamma\left(\frac{p}{2}+1\right) }[/math] for all [math]\displaystyle{ p \geq 1 }[/math], where [math]\displaystyle{ K_3 }[/math] is a positive constant.

Proof. [math]\displaystyle{ (1)\implies(3) }[/math] By the layer cake representation,[math]\displaystyle{ \begin{align} \operatorname{E} |X|^p &= \int_0^\infty \operatorname{P}(|X|^p \geq t) dt\\ &= \int_0^\infty pt^{p-1}\operatorname{P}(|X| \geq t) dt\\ &\leq 2\int_0^\infty pt^{p-1}\exp\left(-\frac{t^2}{K_1^2}\right) dt\\ \end{align} }[/math]After a change of variables [math]\displaystyle{ u=t^2/K_1^2 }[/math], we find that[math]\displaystyle{ \begin{align} \operatorname{E} |X|^p &\leq 2K_1^p \frac{p}{2}\int_0^\infty u^{\frac{p}{2}-1}e^{-u} du\\ &= 2K_1^p \frac{p}{2}\Gamma\left(\frac{p}{2}\right)\\ &= 2K_1^p \Gamma\left(\frac{p}{2}+1\right). \end{align} }[/math]

[math]\displaystyle{ (3)\implies(2) }[/math] Using the Taylor series for [math]\displaystyle{ e^x }[/math]:[math]\displaystyle{ e^x = 1 + \sum_{p=1}^\infty \frac{x^p}{p!}, }[/math] we obtain that[math]\displaystyle{ \begin{align} \operatorname{E}[\exp{(\lambda X^2)}] &= 1 + \sum_{p=1}^\infty \frac{\lambda^p \operatorname{E}{[X^{2p}]}}{p!}\\ &\leq 1 + \sum_{p=1}^\infty \frac{2\lambda^p K_3^{2p} \Gamma\left(p+1\right)}{p!}\\ &= 1 + 2 \sum_{p=1}^\infty \lambda^p K_3^{2p}\\ &= 2 \sum_{p=0}^\infty \lambda^p K_3^{2p}-1\\ &= \frac{2}{1-\lambda K_3^2}-1 \quad\text{for }\lambda K_3^2 \lt 1, \end{align} }[/math]which is less than or equal to [math]\displaystyle{ 2 }[/math] for [math]\displaystyle{ \lambda \leq \frac{1}{3K_3^2} }[/math]. Take [math]\displaystyle{ K_2 \geq 3^{\frac{1}{2}}K_3 }[/math], then[math]\displaystyle{ \operatorname{E}[\exp{(X^2/K_2^2)}] \leq 2. }[/math]


[math]\displaystyle{ (2)\implies(1) }[/math] By Markov's inequality,[math]\displaystyle{ \operatorname{P}(|X|\geq t) = \operatorname{P}\left( \exp\left(\frac{X^2}{K_2^2}\right) \geq \exp\left(\frac{t^2}{K_2^2}\right) \right) \leq \frac{\operatorname{E}[\exp{(X^2/K_2^2)}]}{\exp\left(\frac{t^2}{K_2^2}\right)} \leq 2 \exp\left(-\frac{t^2}{K_2^2}\right). }[/math]

More equivalent definitions

The following properties are equivalent:

  • The distribution of [math]\displaystyle{ X }[/math] is sub-Gaussian.
  • Laplace transform condition: for some B, b > 0, [math]\displaystyle{ \operatorname{E} e^{\lambda (X-\operatorname{E}[X])} \leq Be^{\lambda^2 b} }[/math] holds for all [math]\displaystyle{ \lambda }[/math].
  • Moment condition: for some K > 0, [math]\displaystyle{ \operatorname{E} |X|^p \leq K^p p^{p/2} }[/math] for all [math]\displaystyle{ p \geq 1 }[/math].
  • Moment generating function condition: for some [math]\displaystyle{ L\gt 0 }[/math], [math]\displaystyle{ \operatorname{E}[\exp(\lambda^2 X^2)] \leq \exp(L^2\lambda^2) }[/math] for all [math]\displaystyle{ \lambda }[/math] such that [math]\displaystyle{ |\lambda| \leq \frac{1}{L} }[/math]. [2]
  • Union bound condition: for some c > 0, [math]\displaystyle{ \ \operatorname{E}[\max\{|X_1 - \operatorname{E}[X]|,\ldots,|X_n - \operatorname{E}[X]|\}] \leq c \sqrt{\log n} }[/math] for all n > c, where [math]\displaystyle{ X_1, \ldots, X_n }[/math] are i.i.d copies of X.

Examples

A standard normal random variable [math]\displaystyle{ X\sim N(0,1) }[/math] is a sub-Gaussian random variable.

Let [math]\displaystyle{ X }[/math] be a random variable with symmetric Bernoulli distribution (or Rademacher distribution). That is, [math]\displaystyle{ X }[/math] takes values [math]\displaystyle{ -1 }[/math] and [math]\displaystyle{ 1 }[/math] with probabilities [math]\displaystyle{ 1/2 }[/math] each. Since [math]\displaystyle{ X^2=1 }[/math], it follows that [math]\displaystyle{ \Vert X \Vert_{gauss} = \inf\left\{ c\gt 0 : \operatorname{E}\left[\exp{\left(\frac{X^2}{c^2}\right)}\right] \leq 2 \right\} = \inf\left\{ c\gt 0 : \operatorname{E}\left[\exp{\left(\frac{1}{c^2}\right)}\right] \leq 2 \right\}=\frac{1}{\sqrt{\ln 2}}, }[/math]and hence [math]\displaystyle{ X }[/math] is a sub-Gaussian random variable.

Maximum of Sub-Gaussian Random Variables

Consider a finite collection of subgaussian random variables, X1, ..., Xn, with corresponding subgaussian parameters [math]\displaystyle{ \sigma }[/math]. The random variable Mn = max(X1, ..., Xn) represents the maximum of this collection. The expectation [math]\displaystyle{ M_n }[/math] can be bounded above by [math]\displaystyle{ \sqrt{2\sigma^2\log n} }[/math]. Note that no independence assumption is needed to form this bound.[1]

See also

Notes

  1. 1.0 1.1 Wainwright MJ. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge: Cambridge University Press; 2019. doi:10.1017/9781108627771, ISBN:9781108627771.
  2. Vershynin, R. (2018). High-dimensional probability: An introduction with applications in data science. Cambridge: Cambridge University Press. pp. 33–34. 

References