Biology:Arthrobacter globiformis

From HandWiki
Revision as of 16:51, 16 February 2024 by Wikisleeper (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Species of bacterium


Arthrobacter globiformis
Scientific classification edit
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Micrococcales
Family: Micrococcaceae
Genus: Arthrobacter
Species:
A. globiformis
Binomial name
Arthrobacter globiformis
corrig. (Conn 1928) Conn and Dimmick 1947 (Approved Lists 1980)
Type strain
ATCC 8010[1]
BCRC 10598
CCRC 10598
CCUG 12157
CCUG 28997
CCUG 581
CGMCC 1.1894
CIP 81.84
DSM 20124
HAMBI 1863
HAMBI 88
IAM 12438
ICPB 3434
IFO 12137
JCM 1332
LMG 3813
NBRC 12137
NCIB 8907
NCIMB 8907
NRIC 151
NRRL B-2979
VKM Ac-1112
Synonyms

Corynebacterium globiforme,
Mycobacterium globiforme

  • "Achromobacter globiformis" (Conn 1928) Bergey et al. 1930
  • Arthrobacter globiforme (Conn 1928) Conn and Dimmick 1947 (Approved Lists 1980)
  • "Bacterium globiforme" Conn 1928
  • "Corynebacterium globiforme" (Conn 1928) Wood 1950
  • "Mycobacterium globiforme" (Conn 1928) Krasil'nikov 1941

Arthrobacter globiformis is a Gram-positive bacterium species from the genus of Arthrobacter.[1][2]

Description and Significance

Arthrobacter globiformis was first discovered  by H. J. Conn in 1928. This bacteria was initially found in large quantities in various types of soil.[3][2] They start as Gram-negative rods before becoming Gram-positive cocci over time. They may also become large, oval-shaped cells called cystite by growing them in very high carbon to nitrogen ratio environments.[2][4][5] These bacteria have cell walls that contain polysaccharides (with monomers glucose, galactose, and rhamnose), peptidoglycan, and phosphorus.[4] They may also have flagella as well.[6] Notably, A. globiformis and its antigens and proteins are commercially available for use in research, food production, biodegradation, and water/wastewater treatment.[7][8]

Metabolism

A. globiformis can break down substances in the soil such as agricultural chemicals, chromium, etc. They are primarily aerobic, but they can survive anaerobically using lactate, acetate, and ethanol producing fermentation for growth.[2] Most are heterotrophic, meaning they cannot produce their own food. The choline oxidase activity of A. globiformis has been extensively characterized and is important for the production of glycine betaine, one of the few soluble osmotic regulators used by most cells.[9]

Genome and Genetics

The complete genome of A. globiformis has been sequenced using whole-genome shotgun sequencing. The genomes of three strains are available for public use.[10] The genome is approximately 4.89 million base pairs long, containing 4305 proteins and a 66.1% GC content.[10] Two major phylogenetic clades exist within the Arthrobacter genus, the A. globiformis/A. citreus group and the A. nicotianae group.[11] These two clades differ mainly in their peptidoglycan structure, teichoic acid content, and lipid composition.[11]

Further reading

  • Eschbach, Martin; Möbitz, Henrik; Rompf, Alexandra; Jahn, Dieter (June 2003). "Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: Anaerobic adaptation of aerobic bacteria abundant in soil". FEMS Microbiology Letters 223 (2): 227–230. doi:10.1016/S0378-1097(03)00383-5. PMID 12829291. 
  • Sharma, Meenakshi; Mishra, Vandana; Rau, Nupur; Sharma, Radhey Shyam (December 2015). "Increased iron-stress resilience of maize through inoculation of siderophore-producing from mine". Journal of Basic Microbiology 56 (7): 719–735. doi:10.1002/jobm.201500450. PMID 26632776. 
  • Sawai, Teruo; Yamaki, Takahiro; Ohya, Toshihide (9 September 2014). "Purification and Some Properties of Exo-l,6--glucosidase". Agricultural and Biological Chemistry 40 (7): 1293–1299. doi:10.1080/00021369.1976.10862217. 
  • NISHIZAWA, Masako; YABUSAKI, Yoshiyasu; KANAOKA, Masaharu (22 May 2014). "Identification of the Catalytic Residues of Carboxylesterase from by Diisopropyl Fluorophosphate-Labeling and Site-Directed Mutagenesis". Bioscience, Biotechnology, and Biochemistry 75 (1): 89–94. doi:10.1271/bbb.100576. PMID 21266781. 
  • Ramanujam, Praveen Kumar; Jayaraman, Jayamuthunagai; Gautam, Pennathur (11 January 2016). "Evaluation of production and kinetics parameters of rare sugar (D-tagatose) using biocatalyst". Management of Environmental Quality 27 (1): 71–78. doi:10.1108/MEQ-07-2015-0124. 
  • Bergey's manual of systematic bacteriology. (2nd ed.). New York: Springer Science + Business Media. 2012. ISBN 978-0-387-68233-4. 
  • Cold-Adapted Organisms Ecology, Physiology, Enzymology and Molecular Biology. Berlin, Heidelberg: Springer Berlin Heidelberg. 1999. ISBN 3-662-06285-2. 
  • R.H. Wijffels, ed (1996). Immobilized Cells Basics and Applications.. Burlington: Elsevier. ISBN 0-08-053447-3. 
  • Practical handbook of microbiology (2nd ed.). Boca Raton: CRC Press. 2009. ISBN 978-1-4200-0933-0. 

References

  1. 1.0 1.1 LPSN lpsn.dsmz.de
  2. 2.0 2.1 2.2 2.3 Eschbach, Martin; Möbitz, Henrik; Rompf, Alexandra; Jahn, Dieter (June 2003). "Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: Anaerobic adaptation of aerobic bacteria abundant in soil". FEMS Microbiology Letters 223 (2): 227–230. doi:10.1016/S0378-1097(03)00383-5. PMID 12829291. 
  3. Conn, H. J. (1928) (in en). A Type of Bacteria Abundant in Productive Soils, But Apparently Lacking in Certain Soils of Low Productivity. Cornell Univ.. https://books.google.com/books?id=dRgIcgAACAAJ. 
  4. 4.0 4.1 Duxbury, T.; Gray, T. R. G.; Sharples, G. P.YR 1977 (1977). "Structure and Chemistry of Walls of Rods, Cocci and Cystites of Arthrobacter globiformis". Microbiology 103 (1): 91–99. doi:10.1099/00221287-103-1-91. ISSN 1465-2080. 
  5. Stevenson, I. L. (2011-02-09). "Some Observations on the So-Called 'Cystites' of the Genus Arthrobacter" (in en). Canadian Journal of Microbiology 9 (4): 467–472. doi:10.1139/m63-060. https://cdnsciencepub.com/doi/abs/10.1139/m63-060. 
  6. García-López, María-Luisa; Santos, Jesús-Ángel; Otero, Andrés (1999-01-01), Robinson, Richard K., ed. (in en), Micrococcus, Oxford: Elsevier, pp. 1344–1350, ISBN 978-0-12-227070-3, https://www.sciencedirect.com/science/article/pii/B0122270703010254, retrieved 2022-03-15 
  7. "Arthrobacter globiformis Antigens - Creative Diagnostics". 
  8. Canada, Health (2018-02-23). "Arthrobacter globiformis - information sheet". https://www.canada.ca/en/health-canada/services/chemical-substances/fact-sheets/chemicals-glance/arthrobacter-globiformis.html. 
  9. Gadda, Giovanni (2020-01-01), Chaiyen, Pimchai; Tamanoi, Fuyuhiko, eds., "Chapter Six - Choline oxidases" (in en), The Enzymes, Flavin-Dependent Enzymes: Mechanisms, Structures and Applications (Academic Press) 47: 137–166, doi:10.1016/bs.enz.2020.05.004, PMID 32951822, https://www.sciencedirect.com/science/article/pii/S187460472030007X, retrieved 2022-03-15 
  10. 10.0 10.1 "Arthrobacter globiformis (ID 12154) - Genome - NCBI". https://www.ncbi.nlm.nih.gov/genome/12154. 
  11. 11.0 11.1 "Home - Arthrobacter sp. FB24". https://genome.jgi.doe.gov/portal/art_f/art_f.home.html. 

External links

-->

Wikidata ☰ Q24977192 entry