Engineering:Q-system (geotechnical engineering)

From HandWiki
Revision as of 12:12, 2 June 2021 by imported>JMinHep (url)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
For the linguistics formalism, see Q-systems.
For the genetic method, see Q-system (genetics).

The Q-system for rock mass classification is developed by Barton, Lien, and Lunde.[1][2][3][4][5][6][7][8][9] It expresses the quality of the rock mass in the so-called Q-value, on which are based design and support recommendations for underground excavations.

The Q-value is determined with

[math]\displaystyle{ Q=\frac{RQD}{J_n} \times \frac{J_r}{J_a} \times \frac{J_w}{SRF} }[/math]

The first term RQD (Rock Quality Designation) divided by Jn (joint set number) is related to the size of the intact rock blocks in the rock mass. The second term Jr (joint roughness number) divided by Ja (joint alteration number) is related to the shear strength along the discontinuity planes and the third term Jw (joint water parameter) divided by SRF (stress reduction factor) is related to the stress environment on the intact rock blocks and discontinuities around the underground excavation.

A multiplication of the three terms results in the Q parameter, which can range between 0.001 for an exceptionally poor to 1000 for an exceptionally good rock mass. The numerical values of the class boundaries for the different rock mass qualities are subdivisions of the Q range on a logarithmic scale.

The Q-value determines the quality of the rock mass, but the support of an underground excavation is based not only on the Q-value but is also determined by the different terms in the above equation. This leads to a very extensive list of classes for support recommendations.

References

  1. Barton, N.R.; Lien, R.; Lunde, J. (1974). "Engineering classification of rock masses for the design of tunnel support". Rock Mechanics and Rock Engineering (Springer) 6 (4): 189–236. doi:10.1007/BF01239496. 
  2. Barton, N.R. (1–5 November 1976). "Recent experiences with the Q-system of tunnel support design". in Bieniawski, Z.T.. Proc. Symposium on Exploration for Rock Engineering, Johannesburg. 1. Balkema, Cape Town. pp. 107–117. ISBN 0-86961-089-9. 
  3. Barton, N.R.; Lien, R.; Lunde, J. (1977). "Estimation of support requirements for underground excavations & discussion". in Fairhurst, C.; Crouch, S.L.. Proc. of 16th Symp. on Design Methods in Rock Mechanics, University of Minnesota, Minneapolis, U. S. A, 1975. American Society of Civil Engineers (ASCE), New York. pp. 163–177, 234–241. 
  4. Barton, N.R. (1988). "Rock Mass Classification and Tunnel Reinforcement Selection using the Q-system". in Kirkaldie, L.. Rock Classification Systems for Engineering Purposes: ASTM Special Technical Publication 984. 1. ASTM International. pp. 59–88. doi:10.1520/STP48464S. ISBN 978-0-8031-0988-9. 
  5. Barton, N.R.; Grimstad, E. (1993). "Updating the Q-system for NMT". in Kompen, C.; Opsahl, S.L.; Berg, S.L.. Proc. of the International Symposium on Sprayed Concrete - Modern Use of Wet Mix Sprayed Concrete for Underground Support, Fagernes, 1993. Norwegian Concrete Association, Oslo. pp. 163–177, 234–241. 
  6. Barton, N.R.; Grimstad, E. (1994). "The Q-system following twenty years of application in NMT support selection; 43rd Geomechanic Colloquy, Salzburg". Felsbau (Verlag Glückauf GmbH, Essen, Germany): 428–436. ISSN 1866-0134. 
  7. Barton, N.R. (2000). TBM Tunnelling in Jointed and Faulted Rock. Taylor & Francis. p. 184. ISBN 978-90-5809-341-7. 
  8. Barton, N.R. (2002). "Some new Q-value correlations to assist in site characterization and tunnel design". International Journal of Rock Mechanics and Mining Sciences 39 (2): 185–216. doi:10.1016/S1365-1609(02)00011-4. 
  9. Barton, N.R. (2006). Rock Quality, Seismic Velocity, Attenuation and Anisotropy. Taylor & Francis. p. 729. ISBN 978-0-415-39441-3. 

Further reading

  • Bieniawski, Z.T. "Engineering Rock Mass Classifications", John Wiley and Sons, New York, 1989
  • Hack, H.R.G.K. (25–28 November 2002). "An evaluation of slope stability classification. Keynote Lecture.". in Dinis da Gama, C.; Ribeira e Sousa, L.. Proc. ISRM EUROCK’2002. Funchal, Madeira, Portugal: Sociedade Portuguesa de Geotecnia, Lisboa, Portugal. pp. 3–32. ISBN 972-98781-2-9. 
  • Pantelidis, L (2009). "Rock slope stability assessment through rock mass classification systems", International Journal of Rock Mechanics and Mining Sciences, 46(2), (315–325).
  • Palmstrom, A.; Broch, E. (2006). "Use and misuse of rock mass classification systems with particular reference to the Q-system". Tunnelling and Underground Space Technology 21 (6): 575–593. doi:10.1016/j.tust.2005.10.005. 

See also