Chemistry:Intermetallic particle

From HandWiki
Revision as of 08:32, 26 May 2022 by imported>Wincert (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Intermetallic particles form during solidification of metallic alloys.

Aluminium alloys

Al-Si-Cu-Mg alloys

For example, Al-Si-Cu-Mg alloys form Al5FeSi- plate like intermetallic phase, Chinese script like -Al8Fe2Si, Al2Cu, etc. The size and morphology of these intermetallic phases in these alloys control the mechanical properties of these alloys especially strength and ductility.[1] The size of these phases depends on the secondary dendrite arm spacing,[2] as well as the Si content of the alloy,[3][4][5][6][7] of the primary phase in the micro structure.

Phases and crystal structures

Phase Structure Space Group a b c α β γ ..
α-Al8Fe2Si[8] hexagonal p63/mmc(194) 12.404 12.404 26.234 90 90 120 ..
β-Al5FeSi[9] monoclinic 2/m 6.16760 6.1661 20.8093 .. .. 91 ..
Al2Cu .. .. .. .. .. .. .. .. ..

Magnesium alloys

WE 43

In-situ synchrotron diffraction experiment[10] on Electron alloy-WE 43 (Mg4Y3Nd) shows that this alloy form the following intermetallic phases ;Mg12Nd, Mg14Y4Nd, and Mg24Y5.

Phases and crystal structures

Phase Structure Space Group a b c α β γ ..
Mg41Nd5 .. .. .. .. .. .. .. .. ..
β-Mg14Nd2Y[11] face centered cubic 2.2 nm .. .. ..
Mg24Y5[11] body centered cubic .. 1.12 nm .. .. .. .. .. ..

AZ 91

References

  1. Caceres, C. H. Svensson, I. L. Taylor, J. A.. Strength-ductility behaviour of Al-Si-Cu-Mg casting alloys in T6 temper. 
  2. Sivarupan, Tharmalingam; Caceres, Carlos H.; Taylor, John A. (9 May 2013). "Alloy Composition and Dendrite Arm Spacing in Al-Si-Cu-Mg-Fe Alloys". Metallurgical and Materials Transactions A 44 (9): 4071–4080. doi:10.1007/s11661-013-1768-x. Bibcode2013MMTA...44.4071S. 
  3. Sivarupan, Tharmalingam; Caceres, Carlos H.; Taylor, John A. (July 2013). "Effect of Si Content on the Size of Fe-Rich Intermetallic Particles in Al-xSi-0.8Fe Alloys". Materials Science Forum 765: 107–111. doi:10.4028/www.scientific.net/MSF.765.107. 
  4. Sivarupan, T.; Taylor, J. A.; Cáceres, C. H. (2014). Effect of Si and Cu Content on the Size of Intermetallic Phase Particles in Al-Si-Cu-Mg-Fe Alloys. 137–143. doi:10.1002/9781118888100.ch17. ISBN 9781118888100. 
  5. Sivarupan, T.; Taylor, J. A.; Cáceres, C. H. (2014). Effect of Si and Cu Content on the Size of Intermetallic Phase Particles in Al-Si-Cu-Mg-Fe Alloys. 137–143. doi:10.1002/9781118888100.ch17. ISBN 9781118888100. 
  6. Sivarupan, Tharmalingam (2014). Ductility and solidification issues in Al-Si-Cu-Mg alloys. doi:10.14264/uql.2015.91. https://espace.library.uq.edu.au/view/UQ:341969/s42390729_phd_finalthesis.pdf. 
  7. Sivarupan, Tharmalingam; Taylor, John Andrew; Cáceres, Carlos Horacio (25 February 2015). "SDAS, Si and Cu Content, and the Size of Intermetallics in Al-Si-Cu-Mg-Fe Alloys". Metallurgical and Materials Transactions A 46 (5): 2082–2107. doi:10.1007/s11661-015-2808-5. Bibcode2015MMTA...46.2082S. 
  8. R.N. Corby and P.J. Black: Acta Crystallogr. Sect. B, 1977, vol. 33, pp. 3468–75.
  9. V. Hansen, B. Hauback, M. Sundberg, C. Romming, and J. Gjonnes: Acta Crystallogr. Sect. B, 1998, vol. 54, pp. 351–57.
  10. Tolnai, D.; Mendis, C.L.; Stark, A.; Szakács, G.; Wiese, B.; Kainer, K.U.; Hort, N. (July 2013). "In situ synchrotron diffraction of the solidification of Mg4Y3Nd". Materials Letters 102-103: 62–64. doi:10.1016/j.matlet.2013.03.110. http://bib-pubdb1.desy.de/record/221781/files/tolnai_30973.pdf. 
  11. 11.0 11.1 "Archived copy". http://www.journalamme.org/papers_vol21_1/1385S.pdf.