Auslander–Buchsbaum theorem
From HandWiki
Revision as of 15:15, 26 October 2021 by imported>John Stpola (simplify)
In commutative algebra, the Auslander–Buchsbaum theorem states that regular local rings are unique factorization domains.
The theorem was first proved by Maurice Auslander and David Buchsbaum (1959). They showed that regular local rings of dimension 3 are unique factorization domains, and Masayoshi Nagata (1958) had previously shown that this implies that all regular local rings are unique factorization domains.
References
- Auslander, Maurice; Buchsbaum, D. A. (1959), "Unique factorization in regular local rings", Proceedings of the National Academy of Sciences of the United States of America 45 (5): 733–734, doi:10.1073/pnas.45.5.733, ISSN 0027-8424, PMID 16590434, Bibcode: 1959PNAS...45..733A
- Nagata, Masayoshi (1958), "A general theory of algebraic geometry over Dedekind domains. II. Separably generated extensions and regular local rings", American Journal of Mathematics 80 (2): 382–420, doi:10.2307/2372791, ISSN 0002-9327
Original source: https://en.wikipedia.org/wiki/Auslander–Buchsbaum theorem.
Read more |