nth root algorithm
From HandWiki
Revision as of 23:49, 13 June 2021 by imported>OrgMain (over-write)
The principal nth root [math]\displaystyle{ \sqrt[n]{A} }[/math] of a positive real number A, is the positive real solution of the equation [math]\displaystyle{ x^n = A }[/math]. For a positive integer n there are n distinct complex solutions to this equation if [math]\displaystyle{ A \gt 0 }[/math], but only one is positive and real.
Using Newton's method
Newton's method is a method for finding a zero of a function f(x). The general iteration scheme is:
- Make an initial guess [math]\displaystyle{ x_0 }[/math]
- Set [math]\displaystyle{ x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} }[/math]
- Repeat step 2 until the desired precision is reached.
The nth root problem can be viewed as searching for a zero of the function
- [math]\displaystyle{ f(x) = x^n - A }[/math]
So the derivative is
- [math]\displaystyle{ f^\prime(x) = n x^{n-1} }[/math]
and the iteration rule is
- [math]\displaystyle{ x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} }[/math]
- [math]\displaystyle{ = x_k - \frac{x_k^n - A}{n x_k^{n-1}} }[/math]
- [math]\displaystyle{ = x_k + \frac{1}{n} \left[-x_k +\frac{A}{x_k^{n-1}}\right] }[/math]
- [math]\displaystyle{ = \frac{1}{n} \left[{(n-1)x_k +\frac{A}{x_k^{n-1}}}\right]\,. }[/math]
See also
References
- Atkinson, Kendall E. (1989), An introduction to numerical analysis (2nd ed.), New York: Wiley, ISBN 0-471-62489-6.