Bockstein spectral sequence
In mathematics, the Bockstein spectral sequence is a spectral sequence relating the homology with mod p coefficients and the homology reduced mod p. It is named after Meyer Bockstein.
Definition
Let C be a chain complex of torsion-free abelian groups and p a prime number. Then we have the exact sequence:
- [math]\displaystyle{ 0 \longrightarrow C \overset{p}\longrightarrow C \overset{\text{mod} p} \longrightarrow C \otimes \Z/p \longrightarrow 0. }[/math]
Taking integral homology H, we get the exact couple of "doubly graded" abelian groups:
- [math]\displaystyle{ H_*(C) \overset{i = p} \longrightarrow H_*(C) \overset{j} \longrightarrow H_*(C \otimes \Z/p) \overset{k} \longrightarrow. }[/math]
where the grading goes: [math]\displaystyle{ H_*(C)_{s,t} = H_{s+t}(C) }[/math] and the same for [math]\displaystyle{ H_*(C \otimes \Z/p),\deg i = (1, -1), \deg j = (0, 0), \deg k = (-1, 0). }[/math]
This gives the first page of the spectral sequence: we take [math]\displaystyle{ E_{s,t}^1 = H_{s+t}(C \otimes \Z/p) }[/math] with the differential [math]\displaystyle{ {}^1 d = j \circ k }[/math]. The derived couple of the above exact couple then gives the second page and so forth. Explicitly, we have [math]\displaystyle{ D^r = p^{r-1} H_*(C) }[/math] that fits into the exact couple:
- [math]\displaystyle{ D^r \overset{i=p}\longrightarrow D^r \overset{{}^r j} \longrightarrow E^r \overset{k}\longrightarrow }[/math]
where [math]\displaystyle{ {}^r j = (\text{mod } p) \circ p^{-{r+1}} }[/math] and [math]\displaystyle{ \deg ({}^r j) = (-(r-1), r - 1) }[/math] (the degrees of i, k are the same as before). Now, taking [math]\displaystyle{ D_n^r \otimes - }[/math] of
- [math]\displaystyle{ 0 \longrightarrow \Z \overset{p}\longrightarrow \Z \longrightarrow \Z/p \longrightarrow 0, }[/math]
we get:
- [math]\displaystyle{ 0 \longrightarrow \operatorname{Tor}_1^{\Z}(D_n^r, \Z/p) \longrightarrow D_n^r \overset{p}\longrightarrow D_n^r \longrightarrow D_n^r \otimes \Z/p \longrightarrow 0 }[/math].
This tells the kernel and cokernel of [math]\displaystyle{ D^r_n \overset{p}\longrightarrow D^r_n }[/math]. Expanding the exact couple into a long exact sequence, we get: for any r,
- [math]\displaystyle{ 0 \longrightarrow (p^{r-1} H_n(C)) \otimes \Z/p \longrightarrow E^r_{n, 0} \longrightarrow \operatorname{Tor}(p^{r-1} H_{n-1}(C), \Z/p) \longrightarrow 0 }[/math].
When [math]\displaystyle{ r = 1 }[/math], this is the same thing as the universal coefficient theorem for homology.
Assume the abelian group [math]\displaystyle{ H_*(C) }[/math] is finitely generated; in particular, only finitely many cyclic modules of the form [math]\displaystyle{ \Z/p^s }[/math] can appear as a direct summand of [math]\displaystyle{ H_*(C) }[/math]. Letting [math]\displaystyle{ r \to \infty }[/math] we thus see [math]\displaystyle{ E^\infty }[/math] is isomorphic to [math]\displaystyle{ (\text{free part of } H_*(C)) \otimes \Z/p }[/math].
References
- McCleary, John (2001), A User's Guide to Spectral Sequences, Cambridge Studies in Advanced Mathematics, 58 (2nd ed.), Cambridge University Press, ISBN 978-0-521-56759-6
- J. P. May, A primer on spectral sequences
Original source: https://en.wikipedia.org/wiki/Bockstein spectral sequence.
Read more |