Weyl module
From HandWiki
Revision as of 00:49, 1 August 2022 by imported>John Stpola (fix)
In algebra, a Weyl module is a representation of a reductive algebraic group, introduced by Carter and Lusztig (1974, 1974b) and named after Hermann Weyl. In characteristic 0 these representations are irreducible, but in positive characteristic they can be reducible, and their decomposition into irreducible components can be hard to determine.
See also
Further reading
- Carter, Roger W.; Lusztig, George (1974), "On the modular representations of the general linear and symmetric groups", Mathematische Zeitschrift 136 (3): 193–242, doi:10.1007/BF01214125, ISSN 0025-5874
- Carter, Roger W.; Lusztig, G. (1974b), "On the modular representations of the general linear and symmetric groups", Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973), Lecture Notes in Mathematics, 372, Berlin, New York: Springer-Verlag, pp. 218–220, doi:10.1007/BFb0065172, ISBN 978-3-540-06845-7
- Hazewinkel, Michiel, ed. (2001), "Weyl_module", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=Weyl_module
Original source: https://en.wikipedia.org/wiki/Weyl module.
Read more |