Lax natural transformation

From HandWiki
Revision as of 22:39, 17 January 2021 by imported>John Stpola (url)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In the mathematical field of category theory, specifically the theory of 2-categories, a lax natural transformation is a kind of morphism between 2-functors.

Definition

Let C and D be 2-categories, and let [math]\displaystyle{ F,G\colon C\to D }[/math] be 2-functors. A lax natural transformation [math]\displaystyle{ \alpha\colon F\to G }[/math] between them consists of

  • a morphism [math]\displaystyle{ \alpha_c\colon F(c)\to G(c) }[/math] in D for every object [math]\displaystyle{ c\in C }[/math] and
  • a 2-morphism [math]\displaystyle{ \alpha_f\colon G(f)\circ\alpha_c \to \alpha_{c'}\circ F(f) }[/math] for every morphism [math]\displaystyle{ f\colon c\to c' }[/math] in C

satisfying some equations (see [1] or [2])

References

  1. nLab page (http://ncatlab.org/nlab/show/lax+natural+transformation)
  2. Gray, Adjointness For 2-Categories