First-order reduction

From HandWiki
Revision as of 19:50, 8 May 2022 by imported>Rtextdoc (over-write)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In computer science, a first-order reduction is a very strong type of reduction between two computational problems in computational complexity theory. A first-order reduction is a reduction where each component is restricted to be in the class FO of problems calculable in first-order logic. Since we have [math]\displaystyle{ \mbox{FO} \subsetneq \mbox{L} }[/math], the first-order reductions are stronger reductions than the logspace reductions.

Many important complexity classes are closed under first-order reductions, and many of the traditional complete problems are first-order complete as well (Immerman 1999 p. 49-50). For example, ST-connectivity is FO-complete for NL, and NL is closed under FO reductions (Immerman 1999, p. 51) (as are P, NP, and most other "well-behaved" classes).

References

  • Immerman, Neil (1999). Descriptive Complexity. New York: Springer-Verlag. ISBN 0-387-98600-6.