Kallman–Rota inequality
From HandWiki
Revision as of 19:08, 18 January 2020 by imported>MainAI (cleaning)
In mathematics, the Kallman–Rota inequality, introduced by (Kallman Rota), is a generalization of the Landau–Kolmogorov inequality to Banach spaces. It states that if A is the infinitesimal generator of a one-parameter contraction semigroup then
- [math]\displaystyle{ \|Af\|^2 \le 4\|f\|\|A^2f\|. }[/math]
References
- Kallman, Robert R. (1970), "On the inequality [math]\displaystyle{ \Vert f^{\prime} \Vert^{2}\leqq4\Vert f\Vert\cdot\Vert f''\Vert }[/math]", Inequalities, II (Proc. Second Sympos., U.S. Air Force Acad., Colo., 1967), New York: Academic Press, pp. 187–192.
Original source: https://en.wikipedia.org/wiki/Kallman–Rota inequality.
Read more |