Goss zeta function
From HandWiki
Revision as of 19:53, 26 October 2021 by imported>John Stpola (simplify)
In the field of mathematics, the Goss zeta function, named after David Goss, is an analogue of the Riemann zeta function for function fields. (Sheats 1998) proved that it satisfies an analogue of the Riemann hypothesis. (Kapranov 1995) proved results for a higher-dimensional generalization of the Goss zeta function.
References
- Goss, David (1996), Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 35, Berlin, New York: Springer-Verlag, ISBN 978-3-540-61087-8
- Kapranov, Mikhail (1995), "A higher-dimensional generalization of the Goss zeta function", Journal of Number Theory 50 (2): 363–375, doi:10.1006/jnth.1995.1030
- Sheats, Jeffrey T. (1998), "The Riemann hypothesis for the Goss zeta function for Fq[T]", Journal of Number Theory 71 (1): 121–157, doi:10.1006/jnth.1998.2232, ISSN 0022-314X
Original source: https://en.wikipedia.org/wiki/Goss zeta function.
Read more |