Angular eccentricity

From HandWiki
Revision as of 18:52, 20 December 2020 by imported>Wikisleeper (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Angular eccentricity α (alpha) and linear eccentricity (ε). Note that OA=BF=a.

Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It may be defined in terms of the eccentricity, e, or the aspect ratio, b/a (the ratio of the semi-minor axis and the semi-major axis):

[math]\displaystyle{ \alpha=\sin^{-1}\!e=\cos^{-1}\left(\frac{b}{a}\right). \,\! }[/math]

Angular eccentricity is not currently used in English language publications on mathematics, geodesy or map projections but it does appear in older literature.[1]

Any non-dimensional parameter of the ellipse may be expressed in terms of the angular eccentricity. Such expressions are listed in the following table after the conventional definitions.[2] in terms of the semi-axes. The notation for these parameters varies. Here we follow Rapp:[2]

(first) eccentricity [math]\displaystyle{ e }[/math] [math]\displaystyle{ \frac{\sqrt{a^2-b^2}}{a} }[/math] [math]\displaystyle{ \sin\alpha }[/math]
second eccentricity [math]\displaystyle{ e' }[/math]  [math]\displaystyle{ \frac{\sqrt{a^2-b^2}}{b} }[/math]   [math]\displaystyle{ \tan\alpha }[/math] 
third eccentricity [math]\displaystyle{ e'' }[/math]  [math]\displaystyle{ \sqrt{\frac{a^2-b^2}{a^2+b^2}} }[/math]   [math]\displaystyle{ \frac{\sin\alpha}{\sqrt{2-\sin^2\alpha}} }[/math] 
(first) flattening [math]\displaystyle{ f }[/math] [math]\displaystyle{ \frac{a-b}{a} }[/math] [math]\displaystyle{ 1-\cos\alpha }[/math] [math]\displaystyle{ =2\sin^2\left(\frac{\alpha}{2}\right) }[/math]
second flattening [math]\displaystyle{ f' }[/math] [math]\displaystyle{ \frac{a-b}{b} }[/math] [math]\displaystyle{ \sec\alpha-1 }[/math] [math]\displaystyle{ =\frac{2\sin^2(\frac{\alpha}{2})}{1-2\sin^2(\frac{\alpha}{2})} }[/math]  
third flattening [math]\displaystyle{ n }[/math] [math]\displaystyle{ \frac{a-b}{a+b} }[/math] [math]\displaystyle{ \frac{1-\cos\alpha}{1+\cos\alpha} }[/math] [math]\displaystyle{ = \tan^2\left(\frac{\alpha}{2}\right) }[/math]

The alternative expressions for the flattenings would guard against large cancellations in numerical work.

References

  1. Haswell, Charles Haynes (1920). Mechanics' and Engineers' Pocket-book of Tables, Rules, and Formulas. Harper & Brothers. https://archive.org/details/mechanicsandeng01haswgoog. Retrieved 2007-04-09. 
  2. 2.0 2.1 Rapp, Richard H. (1991). Geometric Geodesy, Part I, Dept. of Geodetic Science and Surveying, Ohio State Univ., Columbus, Ohio.[1]

External links