Inverse system

From HandWiki
Revision as of 07:54, 17 January 2021 by imported>Rjetedi (simplify)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, an inverse system in a category C is a functor from a small cofiltered category I to C. An inverse system is sometimes called a pro-object in C. The dual concept is a direct system.

The category of inverse systems

Pro-objects in C form a category pro-C. The general definition was given by Alexander Grothendieck in 1959, in TDTE.[1]

Two inverse systems

F:I[math]\displaystyle{ \to }[/math] C

and

G:J[math]\displaystyle{ \to }[/math] C determine a functor

Iop x J [math]\displaystyle{ \to }[/math] Sets,

namely the functor

[math]\displaystyle{ \mathrm{Hom}_C(F(i),G(j)) }[/math].

The set of homomorphisms between F and G in pro-C is defined to be the colimit of this functor in the first variable, followed by the limit in the second variable.

If C has all inverse limits, then the limit defines a functor pro-C[math]\displaystyle{ \to }[/math]C. In practice, e.g. if C is a category of algebraic or topological objects, this functor is not an equivalence of categories.

Direct systems/Ind-objects

An ind-object in C is a pro-object in Cop. The category of ind-objects is written ind-C.

Examples

  • If C is the category of finite groups, then pro-C is equivalent to the category of profinite groups and continuous homomorphisms between them.
  • If C is the category of finitely generated groups, then ind-C is equivalent to the category of all groups.

Notes

  1. C.E. Aull; R. Lowen (31 December 2001). Handbook of the History of General Topology. Springer Science & Business Media. p. 1147. ISBN 978-0-7923-6970-7. https://books.google.com/books?id=dV6WtepcZLkC&pg=PA1147. 

References