Schinzel circle
From HandWiki
Revision as of 15:01, 9 May 2022 by imported>Smart bot editor (fix)
Schinzel circles are a set of circles with a given number of integer points on the circumference of the circle.
If the number n of points on the circumference of the circle is even, n = 2k, then a Schinzel circle is given by:
- [math]\displaystyle{ \left(x-\frac{1}{2}\right)^2 + y^2 = \frac{1}{4} 5^{k-1} }[/math],
whereas for odd n = 2k + 1,
- [math]\displaystyle{ \left(x-\frac{1}{3}\right)^2 + y^2 = \frac{1}{9} 5^{2k} }[/math].
References
- ↑ Weisstein, Eric. "Schinzel Circle". Wolfram MathWorld. http://mathworld.wolfram.com/SchinzelCircle.html. Retrieved 19 August 2015.
- ↑ Mutanguha, Jean Pierre. "Schinzel's Theorem". http://euler.genepeer.com/schinzels-theorem/.