Physics:Hertz–Knudsen equation

From HandWiki
Revision as of 04:24, 5 February 2024 by Jport (talk | contribs) (change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In surface chemistry, the Hertz–Knudsen equation, also known as Knudsen-Langmuir equation describes evaporation rates, named after Heinrich Hertz and Martin Knudsen.

Definition

Non-dissociative adsorption (Langmuirian adsorption)

The Hertz–Knudsen equation describes the non-dissociative adsorption of a gas molecule on a surface by expressing the variation of the number of molecules impacting on the surfaces per unit of time as a function of the pressure of the gas and other parameters which characterise both the gas phase molecule and the surface:[1][2]

[math]\displaystyle{ \frac{\mathrm{d}N}{\mathrm{d}t} \equiv \varphi = \frac{\alpha p}{\sqrt{2\pi m k_\text{B} T}} = \frac{\alpha p N_A}{\sqrt{2\pi M RT}}, }[/math]

where:

Quantity Description
A Surface area (in m2)
N Number of gas molecules
t Time (in s)
φ Flux of the gas molecules (in m−2 s−1)
α Sticking coefficient of the gas molecules onto the surface, 0 ≤ α ≤ 1
p The gas pressure (in Pa)
M Molar mass (in kg mol−1)
m Mass of a particle (in kg)
kB Boltzmann constant
T Temperature (in K)
R Gas constant (J mol−1 K−1)
NA Avogadro constant (mol−1)

Since the equation result has the units of s-1 it can be assimilated to a rate constant for the adsorption process.

Applications

Microkinetic Modelling

See also

References

  1. Kolasinski, Kurt W. (2012). Surface Science: Foundations of Catalysis and Nanoscience, Third Edition. p. 203. doi:10.1002/9781119941798. 
  2. R. B. Darling, EE-527: Micro Fabrication, Virginia University (retrieved Feb. 9 2015).