Łoś–Tarski preservation theorem

From HandWiki

The Łoś–Tarski theorem is a theorem in model theory, a branch of mathematics, that states that the set of formulas preserved under taking substructures is exactly the set of universal formulas.[1] The theorem was discovered by Jerzy Łoś and Alfred Tarski.

Statement

Let [math]\displaystyle{ T }[/math] be a theory in a first-order logic language [math]\displaystyle{ L }[/math] and [math]\displaystyle{ \Phi(\bar{x}) }[/math] a set of formulas of [math]\displaystyle{ L }[/math]. (The sequence of variables [math]\displaystyle{ \bar{x} }[/math] need not be finite.) Then the following are equivalent:

  1. If [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] are models of [math]\displaystyle{ T }[/math], [math]\displaystyle{ A \subseteq B }[/math], [math]\displaystyle{ \bar{a} }[/math] is a sequence of elements of [math]\displaystyle{ A }[/math]. If [math]\displaystyle{ B \models \bigwedge \Phi(\bar{a}) }[/math], then [math]\displaystyle{ A \models \bigwedge \Phi(\bar{a}) }[/math].
    ([math]\displaystyle{ \Phi }[/math] is preserved in substructures for models of [math]\displaystyle{ T }[/math])
  2. [math]\displaystyle{ \Phi }[/math] is equivalent modulo [math]\displaystyle{ T }[/math] to a set [math]\displaystyle{ \Psi(\bar{x}) }[/math] of [math]\displaystyle{ \forall_1 }[/math] formulas of [math]\displaystyle{ L }[/math].

A formula is [math]\displaystyle{ \forall_1 }[/math] if and only if it is of the form [math]\displaystyle{ \forall \bar{x} [\psi(\bar{x})] }[/math] where [math]\displaystyle{ \psi(\bar{x}) }[/math] is quantifier-free.

In more common terms, this states that every first-order formula is preserved under induced substructures if and only if it is [math]\displaystyle{ \forall_1 }[/math], i.e. logically equivalent to a first-order universal formula. As substructures and embeddings are dual notions, this theorem is sometimes stated in its dual form: every first-order formula is preserved under embeddings on all structures if and only if it is [math]\displaystyle{ \exists_1 }[/math], i.e. logically equivalent to a first-order existential formula. [2]

Note that this property fails for finite models.

Citations

  1. Hodges, Wilfrid (1997), A Shorter Model Theory, Cambridge University Press, p. 143, ISBN 0521587131 
  2. Rossman, Benjamin. "Homomorphism Preservation Theorems". J. ACM 55 (3). doi:10.1145/1379759.1379763. https://doi.org/10.1145/1379759.1379763. 

References

  • Hinman, Peter G. (2005). Fundamentals of Mathematical Logic. A K Peters. p. 255. ISBN 1568812620.