σ-Algebra of τ-past
The σ-algebra of τ-past, (also named stopped σ-algebra, stopped σ-field, or σ-field of τ-past) is a σ-algebra associated with a stopping time in the theory of stochastic processes, a branch of probability theory.[1][2]
Definition
Let [math]\displaystyle{ \tau }[/math] be a stopping time on the filtered probability space [math]\displaystyle{ (\Omega, \mathcal A, (\mathcal F_t)_{t \in T}, P ) }[/math]. Then the σ-algebra
- [math]\displaystyle{ \mathcal F_\tau:= \{ A \in \mathcal A \mid \forall t \in T \colon \{ \tau \leq t \} \cap A \in \mathcal F_t\} }[/math]
is called the σ-algebra of τ-past.[1][2]
Properties
Monotonicity
Is [math]\displaystyle{ \sigma, \tau }[/math] are two stopping times and
- [math]\displaystyle{ \sigma \leq \tau }[/math]
almost surely, then
- [math]\displaystyle{ \mathcal F_\sigma \subset \mathcal F_\tau. }[/math]
Measurability
A stopping time [math]\displaystyle{ \tau }[/math] is always [math]\displaystyle{ \mathcal F_\tau }[/math]-measurable.
Intuition
The same way [math]\displaystyle{ \mathcal{F}_t }[/math] is all the information up to time [math]\displaystyle{ t }[/math], [math]\displaystyle{ \mathcal{F}_\tau }[/math] is all the information up time [math]\displaystyle{ \tau }[/math]. The only difference is that [math]\displaystyle{ \tau }[/math] is random. For example, if you had a random walk, and you wanted to ask, “How many times did the random walk hit −5 before it first hit 10?”, then letting [math]\displaystyle{ \tau }[/math] be the first time the random walk hit 10, [math]\displaystyle{ \mathcal{F}_\tau }[/math] would give you the information to answer that question.[3]
References
- ↑ 1.0 1.1 Karandikar, Rajeeva (2018). Introduction to Stochastic Calculus. Indian Statistical Institute Series. Singapore: Springer Nature. pp. 47. doi:10.1007/978-981-10-8318-1. ISBN 978-981-10-8317-4.
- ↑ 2.0 2.1 Klenke, Achim (2008). Probability Theory. Berlin: Springer. pp. 193. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6.
- ↑ "Earnest, Mike (2017). Comment on StackExchange: Intuition regarding the σ algebra of the past (stopping times)". https://math.stackexchange.com/q/2445077#comment5051155_2445077.
Original source: https://en.wikipedia.org/wiki/Σ-Algebra of τ-past.
Read more |