Actuarial polynomials
From HandWiki
This article may be incomprehensible or very hard to understand.October 2017) (Learn how and when to remove this template message) ( |
In mathematics, the actuarial polynomials a(β)n(x) are polynomials studied by (Toscano 1950) given by the generating function
- [math]\displaystyle{ \displaystyle \sum_n \frac{a_n^{(\beta)}(x)}{n!}t^n = \exp(\beta t +x(1-e^t)) }[/math]
(Roman 1984), (Boas Buck).
See also
References
- Boas, Ralph P.; Buck, R. Creighton (1958), Polynomial expansions of analytic functions, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge., 19, Berlin, New York: Springer-Verlag, ISBN 9783540031239, https://books.google.com/books?id=eihMuwkh4DsC
- Roman, Steven (1984), The umbral calculus, Pure and Applied Mathematics, 111, London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], ISBN 978-0-12-594380-2, https://books.google.com/books?id=JpHjkhFLfpgC Reprinted by Dover, 2005
- Toscano, Letterio (1950), "Una classe di polinomi della matematica attuariale" (in Italian), Rivista di Matematica della Università di Parma 1: 459–470
Further reading
- Kim, Eun Woo; Jang, Yu Seon (2016). "Some Umbral Characteristics of the Actuarial Polynomials". Journal of the Chungcheong Mathematical Society 29 (1): 73–82. doi:10.14403/jcms.2016.29.1.73. http://koreascience.or.kr/journal/view.jsp?kj=CCSHBU&py=2016&vnc=v29n1&sp=73.
Original source: https://en.wikipedia.org/wiki/Actuarial polynomials.
Read more |