Arithmetical ring

From HandWiki

In algebra, a commutative ring R is said to be arithmetical (or arithmetic) if any of the following equivalent conditions hold:

  1. The localization [math]\displaystyle{ R_\mathfrak{m} }[/math] of R at [math]\displaystyle{ \mathfrak{m} }[/math] is a uniserial ring for every maximal ideal [math]\displaystyle{ \mathfrak{m} }[/math] of R.
  2. For all ideals [math]\displaystyle{ \mathfrak{a}, \mathfrak{b} }[/math], and [math]\displaystyle{ \mathfrak{c} }[/math],
    [math]\displaystyle{ \mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) = (\mathfrak{a} \cap \mathfrak{b}) + (\mathfrak{a} \cap \mathfrak{c}) }[/math]
  3. For all ideals [math]\displaystyle{ \mathfrak{a}, \mathfrak{b} }[/math], and [math]\displaystyle{ \mathfrak{c} }[/math],
    [math]\displaystyle{ \mathfrak{a} + (\mathfrak{b} \cap \mathfrak{c}) = (\mathfrak{a} + \mathfrak{b}) \cap (\mathfrak{a} + \mathfrak{c}) }[/math]

The last two conditions both say that the lattice of all ideals of R is distributive.

An arithmetical domain is the same thing as a Prüfer domain.

References

External links

"Arithmetical ring". http://planetmath.org/?op=getobj&from=objects&id={{{id}}}.