Arithmetical ring
From HandWiki
In algebra, a commutative ring R is said to be arithmetical (or arithmetic) if any of the following equivalent conditions hold:
- The localization [math]\displaystyle{ R_\mathfrak{m} }[/math] of R at [math]\displaystyle{ \mathfrak{m} }[/math] is a uniserial ring for every maximal ideal [math]\displaystyle{ \mathfrak{m} }[/math] of R.
- For all ideals [math]\displaystyle{ \mathfrak{a}, \mathfrak{b} }[/math], and [math]\displaystyle{ \mathfrak{c} }[/math],
- [math]\displaystyle{ \mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) = (\mathfrak{a} \cap \mathfrak{b}) + (\mathfrak{a} \cap \mathfrak{c}) }[/math]
- For all ideals [math]\displaystyle{ \mathfrak{a}, \mathfrak{b} }[/math], and [math]\displaystyle{ \mathfrak{c} }[/math],
- [math]\displaystyle{ \mathfrak{a} + (\mathfrak{b} \cap \mathfrak{c}) = (\mathfrak{a} + \mathfrak{b}) \cap (\mathfrak{a} + \mathfrak{c}) }[/math]
The last two conditions both say that the lattice of all ideals of R is distributive.
An arithmetical domain is the same thing as a Prüfer domain.
References
- Boynton, Jason (2007). "Pullbacks of arithmetical rings". Commun. Algebra 35 (9): 2671–2684. doi:10.1080/00927870701351294. ISSN 0092-7872.
- Fuchs, Ladislas (1949). "Über die Ideale arithmetischer Ringe" (in German). Comment. Math. Helv. 23: 334–341. doi:10.1007/bf02565607. ISSN 0010-2571.
- Larsen, Max D.; McCarthy, Paul Joseph (1971). Multiplicative theory of ideals. Pure and Applied Mathematics. 43. Academic Press. pp. 150–151. ISBN 0080873561.
External links
"Arithmetical ring". http://planetmath.org/?op=getobj&from=objects&id={{{id}}}.
![]() | Original source: https://en.wikipedia.org/wiki/Arithmetical ring.
Read more |