Astronomy:Black hole stability conjecture

From HandWiki
Short description: Conjecture in general relativity

The black hole stability conjecture is the conjecture that a perturbed Kerr black hole in Minkowski space will settled back down to a stable state. The question developed out of work in 1952 by the French mathematician Yvonne Choquet-Bruhat.[1][2]

The stability of empty Minkowski space is a result of Klainerman and Christodoulou from 1993.[3]

A 2016 by Hintz and Vasy paper proved the stability of slowly rotating Kerr black holes in de Sitter space.[4][2]

A limited stability result for Kerr black holes in Schwarzschild space-time was published by Klainerman and Szeftel in 2017.[5][2]

Culminating in 2022, a series of papers was published by Giorgi, Klainerman and Szeftel which present a proof of the conjecture for slowly rotating Kerr black holes in Minkowski space-time.[6][7][8]

See also


References

  1. Fourès-Bruhat, Y. (1952). "Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires" (in en). Acta Mathematica 88 (0): 141–225. doi:10.1007/BF02392131. ISSN 0001-5962. http://projecteuclid.org/euclid.acta/1485888716. 
  2. 2.0 2.1 2.2 Harnett, Kevin (8 March 2018). "To Test Einstein’s Equations, Poke a Black Hole". https://www.quantamagazine.org/to-test-einsteins-equations-poke-a-black-hole-20180308/. 
  3. Christodoulou, Demetrios; Klainerman, Sergiu (1993). The global nonlinear stability of the Minkowski space. Princeton mathematical series. Princeton: Princeton university press. ISBN 978-0-691-08777-1. 
  4. Hintz, Peter; Vasy, András (2018). "The global non-linear stability of the Kerr-de Sitter family of black holes". Acta Mathematica 220 (1): 1–206. doi:10.4310/acta.2018.v220.n1.a1. 
  5. Klainerman, Sergiu; Szeftel, Jeremie (2018-12-20). "Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations". arXiv:1711.07597 [gr-qc].
  6. Nadis, Steve (2022-08-04). "Black Holes Finally Proven Mathematically Stable" (in en). https://www.quantamagazine.org/black-holes-finally-proven-mathematically-stable-20220804/. 
  7. Klainerman, Sergiu; Szeftel, Jeremie (2021-04-23). "Kerr stability for small angular momentum". arXiv:2104.11857 [math.AP].
  8. Giorgi, Elena; Klainerman, Sergiu; Szeftel, Jeremie (2022-05-30). "Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes". arXiv:2205.14808 [math.AP].