Astronomy:Murray Formation

The Murray Formation is the name given to a distinctive mudstone geologic formation studied by the Mars Science Laboratory (MSL) Curiosity at the Gale Crater, Mars.[1]
Stratigraphy
The formation is more than 300 metres (980 ft) thick[2] and is part of the Mount Sharp Group which interfingers with units of the Bradbury Group.[3] The formation is composed mostly of basaltic minerals plus clays, though an intermediate horizon contains tridymite, cristobalite, quartz and opal.[4]
The Murray formation has five named subunits, the Pahrump Hills Member, Hartmann's Valley Member, Karasburg Member, Sutton Island Member, and Vera Rubin Ridge Member.[2] It unconformably underlies the Stimson formation.[5]
The Murray formation is the target of multiple compelling hints of ancient Martian microbial life. The region contains veins of boron[6][7] and "halos" of silica likely formed by groundwater flows late in the crater's geologic history[8] and high levels of manganese oxide suggesting Earth-like oxygen levels early in Mars' history.[9]
References
- ↑ E.B. Rampe et al. (August 2017). "Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars" (in en). Earth and Planetary Science Letters. LPI contribution 471: 172–185. doi:10.1016/J.EPSL.2017.04.021. ISSN 0012-821X. Bibcode: 2017E&PSL.471..172R. https://hdl.handle.net/20.500.11753/1495.
- ↑ 2.0 2.1 C. M. Fedo; J. P. Grotzinger; S. Gupta; A. Fraeman; L. Edgar; K. Edgett; N. Stein; F. Rivera-Hernandez et al. (March 2018). "Sedimentology and Stratigraphy of the Murray Formation, Gale Crater, Mars" (in en). Lunar and Planetary Institute. Bibcode: 2018LPI....49.2078F. https://www.hou.usra.edu/meetings/lpsc2018/pdf/2078.pdf.
- ↑ J P Grotzinger et al. (1 October 2015). "Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars" (in en). Science 350 (6257). doi:10.1126/SCIENCE.AAC7575. ISSN 0036-8075. PMID 26450214. Bibcode: 2015Sci...350.7575G.
- ↑ McSween, Harry; Moersch, Jeffrey; Burr, Devon; Dunne, William; Emery, Joshua; Kah, Linda; McCanta, Molly (2019). Planetary Geoscience. Cambridge: Cambridge University Press. pp. 302–310. ISBN 978-1-107-14538-2.
- ↑ S.G. Banham; S. Gupta; D.M. Rubin; J.A. Watkins; D.Y. Sumner; J.P. Grotzinger; K.W. Lewis; K.S. Edgett et al. (2017). "The Stimson Formation: Determining the Morphology of a Dry Aeolian Dune System and its Climatic Significance in Gale Crater, Mars" (in en). https://www.hou.usra.edu/meetings/lpsc2017/pdf/2014.pdf.
- ↑ Gasda, Patrick J.; Haldeman, Ethan B.; Wiens, Roger C.; Rapin, William; Bristow, Thomas F.; Bridges, John C.; Schwenzer, Susanne P.; Clark, Benton et al. (2017). "In situ detection of boron by Chem Cam on Mars". Geophysical Research Letters 44 (17): 8739–8748. doi:10.1002/2017GL074480. Bibcode: 2017GeoRL..44.8739G.
- ↑ "Discovery of boron on Mars adds to evidence for habitability: Boron compounds play role in stabilizing sugars needed to make RNA, a key to life". https://www.sciencedaily.com/releases/2017/09/170905123226.htm.
- ↑ Frydenvang, J.; Gasda, P. J.; Hurowitz, J. A.; Grotzinger, J. P.; Wiens, R. C.; Newsom, H. E.; Edgett, K. S.; Watkins, J. et al. (May 28, 2017). "Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars". Geophysical Research Letters 44 (10): 4716–4724. doi:10.1002/2017GL073323. ISSN 0094-8276. Bibcode: 2017GeoRL..44.4716F. https://hal-insu.archives-ouvertes.fr/insu-03665968/file/Geophysical%20Research%20Letters%20-%202017%20-%20Frydenvang%20-%20Diagenetic%20silica%20enrichment%20and%20late%25u2010stage%20groundwater%20activity%20in%20Gale.pdf.
- ↑ Gasda, P. J.; Lanza, N. L.; Meslin, P.-Y.; Lamm, S. N.; Cousin, A.; Anderson, R.; Forni, O.; Swanner, E. et al. (2024). "Manganese-Rich Sandstones as an Indicator of Ancient Oxic Lake Water Conditions in Gale Crater, Mars". Journal of Geophysical Research: Planets 129 (5). doi:10.1029/2023JE007923. ISSN 2169-9097. Bibcode: 2024JGRE..12907923G.
