Astronomy:Photon surface
Photon sphere (definition[1][2]):
A photon sphere of a static spherically symmetric metric is a timelike hypersurface [math]\displaystyle{ \{r=r_{ps}\} }[/math] if the deflection angle of a light ray with the closest distance of approach [math]\displaystyle{ r_o }[/math] diverges as [math]\displaystyle{ r_o \rightarrow r_{ps}. }[/math]
For a general static spherically symmetric metric
[math]\displaystyle{ g = - \beta\left(r\right) dt^2 - \alpha(r) dr^2 - \sigma(r) r^2 (d\theta^2 + \sin^2\theta d\phi^2), }[/math]
the photon sphere equation is:
[math]\displaystyle{ 2\sigma(r) \beta + r \frac{d\sigma(r)}{dr} \beta(r) - r \frac{d\beta(r)}{dr} \sigma(r) = 0. }[/math]
The concept of a photon sphere in a static spherically metric was generalized to a photon surface of any metric.
Photon surface (definition[3]) :
A photon surface of (M,g) is an immersed, nowhere spacelike hypersurface S of (M, g) such that, for every point p∈S and every null vector k∈TpS, there exists a null geodesic [math]\displaystyle{ {\gamma} }[/math]:(-ε,ε)→M of (M,g) such that [math]\displaystyle{ {\dot{\gamma}} }[/math](0)=k, |γ|⊂S.
Both definitions give the same result for a general static spherically symmetric metric.[3]
Theorem:[3]
Subject to an energy condition, a black hole in any spherically symmetric spacetime must be surrounded by a photon sphere. Conversely, subject to an energy condition, any photon sphere must cover more than a certain amount of matter, a black hole, or a naked singularity.
References
- ↑ Virbhadra, K. S.; Ellis, George F. R. (2000-09-08). "Schwarzschild black hole lensing". Physical Review D (American Physical Society (APS)) 62 (8): 084003. doi:10.1103/physrevd.62.084003. ISSN 0556-2821. Bibcode: 2000PhRvD..62h4003V.
- ↑ Virbhadra, K. S.; Ellis, G. F. R. (2002-05-10). "Gravitational lensing by naked singularities". Physical Review D (American Physical Society (APS)) 65 (10): 103004. doi:10.1103/physrevd.65.103004. ISSN 0556-2821. Bibcode: 2002PhRvD..65j3004V.
- ↑ 3.0 3.1 3.2 Claudel, Clarissa-Marie; Virbhadra, K. S.; Ellis, G. F. R. (2001). "The geometry of photon surfaces". Journal of Mathematical Physics 42 (2): 818–838. doi:10.1063/1.1308507. ISSN 0022-2488. Bibcode: 2001JMP....42..818C.
Original source: https://en.wikipedia.org/wiki/Photon surface.
Read more |