Astronomy:Virbhadra–Ellis lens equation
From HandWiki
The Virbhadra-Ellis lens equation [1] in astronomy and mathematics relates to the angular positions of an unlensed source [math]\displaystyle{ \left(\beta\right) }[/math], the image [math]\displaystyle{ \left(\theta\right) }[/math], the Einstein bending angle of light [math]\displaystyle{ (\hat{\alpha}) }[/math], and the angular diameter lens-source [math]\displaystyle{ \left(D_{ds}\right) }[/math] and observer-source [math]\displaystyle{ \left(D_s\right) }[/math] distances.
- [math]\displaystyle{ \tan \beta = \tan \theta - \frac{D_{ds}}{D_s} \left [\tan \theta + \tan \left (\hat{\alpha}-\theta\right ) \right ] }[/math].
This lens equation is useful for studying gravitational lensing in a strong gravitational field.
References
- ↑ Virbhadra, K. S.; Ellis, George F. R. (2000-09-08). "Schwarzschild black hole lensing". Physical Review D (American Physical Society (APS)) 62 (8): 084003. doi:10.1103/physrevd.62.084003. ISSN 0556-2821. Bibcode: 2000PhRvD..62h4003V.
Original source: https://en.wikipedia.org/wiki/Virbhadra–Ellis lens equation.
Read more |