Azumaya algebra

From HandWiki

In mathematics, an Azumaya algebra is a generalization of central simple algebras to R-algebras where R need not be a field. Such a notion was introduced in a 1951 paper of Goro Azumaya, for the case where R is a commutative local ring. The notion was developed further in ring theory, and in algebraic geometry, where Alexander Grothendieck made it the basis for his geometric theory of the Brauer group in Bourbaki seminars from 1964–65. There are now several points of access to the basic definitions.

Over a ring

An Azumaya algebra[1] [2] over a commutative ring R is an R-algebra A obeying any of the following equivalent conditions:

  1. There exists an R-algebra B such that the tensor product of R-algebras BRA is Morita equivalent to R.
  2. The R-algebra AopRA is Morita equivalent to R, where Aop is the opposite algebra of A.
  3. The center of A is R, and A is separable.
  4. A is finitely generated, faithful, and projective as an R-module, and the tensor product ARAop is isomorphic to EndR(A) via the map sending ab to the endomorphism xaxb of A.

Examples over a field

Over a field k, Azumaya algebras are completely classified by the Artin–Wedderburn theorem since they are the same as central simple algebras. These are algebras isomorphic to the matrix ring Mn(D) for some division algebra D over k whose center is just k. For example, quaternion algebras provide examples of central simple algebras.

Examples over local rings

Given a local commutative ring (R,𝔪), an R-algebra A is Azumaya if and only if A is free of positive finite rank as an R-module, and the algebra AR(R/𝔪) is a central simple algebra over R/𝔪, hence all examples come from central simple algebras over R/𝔪.

Cyclic algebras

There is a class of Azumaya algebras called cyclic algebras which generate all similarity classes of Azumaya algebras over a field K, hence all elements in the Brauer group Br(K) (defined below). Given a finite cyclic Galois field extension L/K of degree n, for every bK* and any generator σGal(L/K) there is a twisted polynomial ring L[x]σ, also denoted A(σ,b), generated by an element x such that

xn=b

and the following commutation property holds:

lx=σ(x)l.

As a vector space over L, L[x]σ has basis 1,x,x2,,xn1 with multiplication given by

xixj={xi+j if i+j<nxi+jnb if i+jn

Note that give a geometrically integral variety[3] X/K, there is also an associated cyclic algebra for the quotient field extension Frac(XL)/Frac(X).

Brauer group of a ring

Over fields, there is a cohomological classification of Azumaya algebras using Étale cohomology. In fact, this group, called the Brauer group, can be also defined as the similarity classes[1]:3 of Azumaya algebras over a ring R, where rings A,A are similar if there is an isomorphism

ARMn(R)ARMm(R)

of rings for some natural numbers n,m. Then, this equivalence is in fact an equivalence relation, and if A1A1, A2A2, then A1RA2A1RA2, showing

[A1][A2]=[A1RA2]

is a well defined operation. This forms a group structure on the set of such equivalence classes called the Brauer group, denoted Br(R). Another definition is given by the torsion subgroup of the etale cohomology group

Brcoh(R):=Het2(Spec(R),𝔾m)tors

which is called the cohomological Brauer group. These two definitions agree when R is a field.

Brauer group using Galois cohomology

There is another equivalent definition of the Brauer group using Galois cohomology. For a field extension E/F there is a cohomological Brauer group defined as

Brcoh(E/F):=HGal2(Gal(E/F),E×)

and the cohomological Brauer group for F is defined as

Brcoh(F)=colimE/FHGal2(Gal(E/F),E×)

where the colimit is taken over all finite Galois field extensions.

Computation for a local field

Over a local non-archimedean field F, such as the p-adic numbers p, local class field theory gives the isomorphism of abelian groups:[4]pg 193

Brcoh(F)/.

This is because given abelian field extensions E2/E1/F there is a short exact sequence of Galois groups

0Gal(E2/E1)Gal(E2/F)Gal(E1/F)0

and from Local class field theory, there is the following commutative diagram:[5]

HGal2(Gal(E2/F),E1×)HGal2(Gal(E1/F),E1×)(1[E2:E1])/(1[E1:F])/

where the vertical maps are isomorphisms and the horizontal maps are injections.

n-torsion for a field

Recall that there is the Kummer sequence[6]

1μn𝔾mn𝔾m1

giving a long exact sequence in cohomology for a field F. Since Hilbert's Theorem 90 implies H1(F,𝔾m)=0, there is an associated short exact sequence

0Het2(F,μn)Br(F)nBr(F)0

showing the second etale cohomology group with coefficients in the nth roots of unity μn is

Het2(F,μn)=Br(F)n-tors.

Generators of n-torsion classes in the Brauer group over a field

The Galois symbol, or norm-residue symbol, is a map from the n-torsion Milnor K-theory group K2M(F)/n to the etale cohomology group Het2(F,μn2), denoted by

Rn,F:K2M(F)/nHet2(F,μn2)[6]

It comes from the composition of the cup product in etale cohomology with the Hilbert's Theorem 90 isomorphism

χn,F:F*/nHet1(F,μn)

hence

Rn,F({a,b})=χn,F(a)χn,F(b)

It turns out this map factors through Het2(F,μn)=Br(F)n-tors, whose class for {a,b} is represented by a cyclic algebra [A(σ,b)]. For the Kummer extension E/F where E=F(an), take a generator σGal(E/F) of the cyclic group, and construct [A(σ,b)]. There is an alternative, yet equivalent construction through Galois cohomology and etale cohomology. Consider the short exact sequence of trivial Gal(F/F)-modules

0/n0

The long exact sequence yields a map

HGal1(F,/n)δHGal2(F,)

For the unique character

χ:Gal(E/F)/n

with χ(σ)=1, there is a unique lift

χ:Gal(F/F)/n

and

δ(χ)(b)=[A(σ,b)]Br(F)

note the class (b) is from the Hilberts theorem 90 map χn,F(b). Then, since there exists a primitive root of unity ζμnF, there is also a class

δ(χ)(b)(ζ)Het2(F,μn2)

It turns out this is precisely the class Rn,F({a,b}). Because of the norm residue isomorphism theorem, Rn,F is an isomorphism and the n-torsion classes in Br(F)n-tors are generated by the cyclic algebras [A(σ,b)].

Skolem–Noether theorem

One of the important structure results about Azumaya algebras is the Skolem–Noether theorem: given a local commutative ring R and an Azumaya algebra RA, the only automorphisms of A are inner. Meaning, the following map is surjective:

{A*Aut(A)a(xa1xa)

where A* is the group of units in A. This is important because it directly relates to the cohomological classification of similarity classes of Azumaya algebras over a scheme. In particular, it implies an Azumaya algebra has structure group PGLn for some n, and the Čech cohomology group

Hˇ1((X)et,PGLn)

gives a cohomological classification of such bundles. Then, this can be related to Het2(X,𝔾m) using the exact sequence

1𝔾mGLnPGLn1

It turns out the image of H1 is a subgroup of the torsion subgroup Het2(X,𝔾m)tors.

On a scheme

An Azumaya algebra on a scheme X with structure sheaf 𝒪X, according to the original Grothendieck seminar, is a sheaf 𝒜 of 𝒪X-algebras that is étale locally isomorphic to a matrix algebra sheaf; one should, however, add the condition that each matrix algebra sheaf is of positive rank. This definition makes an Azumaya algebra on (X,𝒪X) into a 'twisted-form' of the sheaf Mn(𝒪X). Milne, Étale Cohomology, starts instead from the definition that it is a sheaf 𝒜 of 𝒪X-algebras whose stalk 𝒜x at each point x is an Azumaya algebra over the local ring 𝒪X,x in the sense given above.

Two Azumaya algebras 𝒜1 and 𝒜2 are equivalent if there exist locally free sheaves 1 and 2 of finite positive rank at every point such that

A1End𝒪X(1)A2End𝒪X(2),[1]:6

where End𝒪X(i) is the endomorphism sheaf of i. The Brauer group B(X) of X (an analogue of the Brauer group of a field) is the set of equivalence classes of Azumaya algebras. The group operation is given by tensor product, and the inverse is given by the opposite algebra. Note that this is distinct from the cohomological Brauer group which is defined as Het2(X,𝔾m).

Example over Spec(Z[1/n])

The construction of a quaternion algebra over a field can be globalized to Spec([1/n]) by considering the noncommutative [1/n]-algebra

Aa,b=[1/n]i,j,ki2a,j2b,ijk,ji+k

then, as a sheaf of 𝒪X-algebras, 𝒜a,b has the structure of an Azumaya algebra. The reason for restricting to the open affine set Spec([1/n])Spec() is because the quaternion algebra is a division algebra over the points (p) is and only if the Hilbert symbol

(a,b)p=1

which is true at all but finitely many primes.

Example over Pn

Over kn Azumaya algebras can be constructed as 𝓃𝒹k()kA for an Azumaya algebra A over a field k. For example, the endomorphism sheaf of 𝒪(a)𝒪(b) is the matrix sheaf

𝓃𝒹k(𝒪(a)𝒪(b))=(𝒪𝒪(ba)𝒪(ab)𝒪)

so an Azumaya algebra over kn can be constructed from this sheaf tensored with an Azumaya algebra A over k, such as a quaternion algebra.

Applications

There have been significant applications of Azumaya algebras in diophantine geometry, following work of Yuri Manin. The Manin obstruction to the Hasse principle is defined using the Brauer group of schemes.

See also

References

  1. 1.0 1.1 1.2 Milne, James S. (1980). Étale cohomology. Princeton, N.J.: Princeton University Press. ISBN 0-691-08238-3. OCLC 5028959. https://www.jmilne.org/math/Books/ECpup4.pdf. 
  2. Borceux, Francis; Vitale, Enrico (2002). "Azumaya categories". Applied Categorical Structures 10: 449–467. https://link.springer.com/content/pdf/10.1023/A:1020570213428.pdf. 
  3. meaning it is an integral variety when extended to the algebraic closure of its base field
  4. Serre, Jean-Pierre. (1979). Local Fields. New York, NY: Springer New York. ISBN 978-1-4757-5673-9. OCLC 859586064. https://www.worldcat.org/oclc/859586064. 
  5. "Lectures on Cohomological Class Field Theory". https://ocw.mit.edu/courses/mathematics/18-786-number-theory-ii-class-field-theory-spring-2016/lecture-notes/MIT18_786S16_notes.pdf. 
  6. 6.0 6.1 Srinivas, V. (1994). "8. The Merkurjev-Suslin Theorem". Algebraic K-Theory (Second ed.). Boston, MA: Birkhäuser Boston. pp. 145–193. ISBN 978-0-8176-4739-1. OCLC 853264222. https://www.worldcat.org/oclc/853264222. 
Brauer group and Azumaya algebras
Division algebras
  • Knus, Max-Albert (1991), Quadratic and Hermitian forms over rings, Grundlehren der Mathematischen Wissenschaften, 294, Berlin etc.: Springer-Verlag, ISBN 3-540-52117-8 
  • Saltman, David J. (1999). Lectures on division algebras. Regional Conference Series in Mathematics. 94. Providence, RI: American Mathematical Society. ISBN 0-8218-0979-2.