BGS conjecture

From HandWiki
}}

The Bohigas–Giannoni–Schmit (BGS) conjecture also known as the random matrix conjecture) for simple quantum mechanical systems (ergodic with a classical limit) few degrees of freedom holds that spectra of time reversal-invariant systems whose classical analogues are K-systems show the same fluctuation properties as predicted by the GOE (Gaussian orthogonal ensembles).[1][2]


  • Energy levels: 22m2ψ+V(x)ψ=Eiψ[definition needed]
  • Spectral density: ρ(x)=iδ(xEi)
  • Average spectral density: ρ(x)
  • Correlation: ρ(x)ρ(y)ρ(x)ρ(y)
  • Unfolding: ρ(x)ρ(x)ρ(x)
  • Unfolded correlation: ρ(x)ρ(y)ρ(x)ρ(y)1
  • BGS conjecture: ρ(x)ρ(y)ρ(x)ρ(y)1=ρ(x)ρ(y)RMTρ(x)RMTρ(y)RMT1


References

  1. Bohigas, O.; Giannoni, M. J.; Schmit, C. (2010), "Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws", Spectral Distributions in Nuclei and Statistical Spectroscopy (World Scientific Publishing Co. Pte. Ltd.): pp. 420–423, doi:10.1142/9789814287395_0024, ISBN 978-981-4287-39-5, https://doi.org/10.1142/9789814287395_0024, retrieved 2025-03-06 
  2. Bohigas, O.; Giannoni, M.J.; Schmit, C. (1984). "Spectral properties of the Laplacian and random matrix theories". Journal de Physique Lettres 45 (21): 1015–1022. doi:10.1051/jphyslet:0198400450210101500. ISSN 0302-072X. https://doi.org/10.1051/jphyslet:0198400450210101500.