Bar product
In information theory, the bar product of two linear codes C2 ⊆ C1 is defined as
- [math]\displaystyle{ C_1 \mid C_2 = \{ (c_1\mid c_1+c_2) : c_1 \in C_1, c_2 \in C_2 \}, }[/math]
where (a | b) denotes the concatenation of a and b. If the code words in C1 are of length n, then the code words in C1 | C2 are of length 2n.
The bar product is an especially convenient way of expressing the Reed–Muller RM (d, r) code in terms of the Reed–Muller codes RM (d − 1, r) and RM (d − 1, r − 1).
The bar product is also referred to as the | u | u+v | construction[1] or (u | u + v) construction.[2]
Properties
Rank
The rank of the bar product is the sum of the two ranks:
- [math]\displaystyle{ \operatorname{rank}(C_1\mid C_2) = \operatorname{rank}(C_1) + \operatorname{rank}(C_2)\, }[/math]
Proof
Let [math]\displaystyle{ \{ x_1, \ldots , x_k \} }[/math] be a basis for [math]\displaystyle{ C_1 }[/math] and let [math]\displaystyle{ \{ y_1, \ldots , y_l \} }[/math] be a basis for [math]\displaystyle{ C_2 }[/math]. Then the set
[math]\displaystyle{ \{ (x_i\mid x_i) \mid 1\leq i \leq k \} \cup \{ (0\mid y_j) \mid 1\leq j \leq l \} }[/math]
is a basis for the bar product [math]\displaystyle{ C_1\mid C_2 }[/math].
Hamming weight
The Hamming weight w of the bar product is the lesser of (a) twice the weight of C1, and (b) the weight of C2:
- [math]\displaystyle{ w(C_1\mid C_2) = \min \{ 2w(C_1) , w(C_2) \}. \, }[/math]
Proof
For all [math]\displaystyle{ c_1 \in C_1 }[/math],
- [math]\displaystyle{ (c_1\mid c_1 + 0 ) \in C_1\mid C_2 }[/math]
which has weight [math]\displaystyle{ 2w(c_1) }[/math]. Equally
- [math]\displaystyle{ (0\mid c_2) \in C_1\mid C_2 }[/math]
for all [math]\displaystyle{ c_2 \in C_2 }[/math] and has weight [math]\displaystyle{ w(c_2) }[/math]. So minimising over [math]\displaystyle{ c_1 \in C_1, c_2 \in C_2 }[/math] we have
- [math]\displaystyle{ w(C_1\mid C_2) \leq \min \{ 2w(C_1) , w(C_2) \} }[/math]
Now let [math]\displaystyle{ c_1 \in C_1 }[/math] and [math]\displaystyle{ c_2 \in C_2 }[/math], not both zero. If [math]\displaystyle{ c_2\not=0 }[/math] then:
- [math]\displaystyle{ \begin{align} w(c_1\mid c_1+c_2) &= w(c_1) + w(c_1 + c_2) \\ & \geq w(c_1 + c_1 + c_2) \\ & = w(c_2) \\ & \geq w(C_2) \end{align} }[/math]
If [math]\displaystyle{ c_2=0 }[/math] then
- [math]\displaystyle{ \begin{align} w(c_1\mid c_1+c_2) & = 2w(c_1) \\ & \geq 2w(C_1) \end{align} }[/math]
so
- [math]\displaystyle{ w(C_1\mid C_2) \geq \min \{ 2w(C_1) , w(C_2) \} }[/math]
See also
References
- ↑ F.J. MacWilliams; N.J.A. Sloane (1977). The Theory of Error-Correcting Codes. North-Holland. p. 76. ISBN 0-444-85193-3. https://archive.org/details/theoryoferrorcor0000macw.
- ↑ J.H. van Lint (1992). Introduction to Coding Theory. GTM. 86 (2nd ed.). Springer-Verlag. p. 47. ISBN 3-540-54894-7. https://archive.org/details/introductiontoco0000lint/page/47.
Original source: https://en.wikipedia.org/wiki/Bar product.
Read more |