Barnes zeta function
From HandWiki
In mathematics, a Barnes zeta function is a generalization of the Riemann zeta function introduced by E. W. Barnes (1901). It is further generalized by the Shintani zeta function.
Definition
The Barnes zeta function is defined by
- [math]\displaystyle{ \zeta_N(s,w\mid a_1,\ldots,a_N)=\sum_{n_1,\dots,n_N\ge 0}\frac{1}{(w+n_1a_1+\cdots+n_Na_N)^s} }[/math]
where w and aj have positive real part and s has real part greater than N.
It has a meromorphic continuation to all complex s, whose only singularities are simple poles at s = 1, 2, ..., N. For N = w = a1 = 1 it is the Riemann zeta function.
References
- Barnes, E. W. (1899), "The Theory of the Double Gamma Function. [Abstract]", Proceedings of the Royal Society of London (The Royal Society) 66: 265–268, doi:10.1098/rspl.1899.0101, ISSN 0370-1662
- Barnes, E. W. (1901), "The Theory of the Double Gamma Function", Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character (The Royal Society) 196 (274–286): 265–387, doi:10.1098/rsta.1901.0006, ISSN 0264-3952, Bibcode: 1901RSPTA.196..265B
- Barnes, E. W. (1904), "On the theory of the multiple gamma function", Trans. Camb. Philos. Soc. 19: 374–425
- Friedman, Eduardo; Ruijsenaars, Simon (2004), "Shintani–Barnes zeta and gamma functions", Advances in Mathematics 187 (2): 362–395, doi:10.1016/j.aim.2003.07.020, ISSN 0001-8708
- Ruijsenaars, S. N. M. (2000), "On Barnes' multiple zeta and gamma functions", Advances in Mathematics 156 (1): 107–132, doi:10.1006/aima.2000.1946, ISSN 0001-8708, https://ir.cwi.nl/pub/2100
Original source: https://en.wikipedia.org/wiki/Barnes zeta function.
Read more |