Bergman–Weil formula
From HandWiki
In mathematics, the Bergman–Weil formula is an integral representation for holomorphic functions of several variables generalizing the Cauchy integral formula. It was introduced by (Bergmann 1936) and (Weil 1935).
Weil domains
A Weil domain (Weil 1935) is an analytic polyhedron with a domain U in Cn defined by inequalities fj(z) < 1 for functions fj that are holomorphic on some neighborhood of the closure of U, such that the faces of the Weil domain (where one of the functions is 1 and the others are less than 1) all have dimension 2n − 1, and the intersections of k faces have codimension at least k.
See also
References
- Bergmann, S. (1936), "Über eine Integraldarstellung von Funktionen zweier komplexer Veränderlichen" (in German), Recueil Mathématique (Matematicheskii Sbornik), New Series 1 (43) (6): 851–862, http://mi.mathnet.ru/eng/msb/v43/i6/p851.
- Hazewinkel, Michiel, ed. (2001), "Bergman–Weil representation", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=b/b015570
- Hazewinkel, Michiel, ed. (2001), "Weil domain", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=W/w097610
- Weil, André (1935), "L'intégrale de Cauchy et les fonctions de plusieurs variables", Mathematische Annalen 111 (1): 178–182, doi:10.1007/BF01472212, ISSN 0025-5831.
Original source: https://en.wikipedia.org/wiki/Bergman–Weil formula.
Read more |