Beurling algebra

From HandWiki

In mathematics, the term Beurling algebra is used for different algebras introduced by Arne Beurling (1949), usually it is an algebra of periodic functions with Fourier series

[math]\displaystyle{ f(x)=\sum a_ne^{inx} }[/math]

Example We may consider the algebra of those functions f where the majorants

[math]\displaystyle{ c_k=\sup_{|n|\ge k} |a_n| }[/math]

of the Fourier coefficients an are summable. In other words

[math]\displaystyle{ \sum_{k\ge 0} c_k\lt \infty. }[/math]

Example We may consider a weight function w on [math]\displaystyle{ \mathbb{Z} }[/math] such that

[math]\displaystyle{ w(m+n)\leq w(m)w(n),\quad w(0)=1 }[/math]

in which case [math]\displaystyle{ A_w(\mathbb{T}) =\{f:f(t)=\sum_na_ne^{int},\,\|f\|_w=\sum_n|a_n|w(n)\lt \infty\} \,(\sim\ell^1_w(\mathbb{Z})) }[/math] is a unitary commutative Banach algebra.

These algebras are closely related to the Wiener algebra.

References