Big q-Legendre polynomials
From HandWiki
}}
In mathematics, the big q-Legendre polynomials are an orthogonal family of polynomials defined in terms of Heine's basic hypergeometric series as[1]
- [math]\displaystyle{ \displaystyle P_n(x;c;q)={}_3\phi_2(q^{-n},q^{n+1},x;q,cq;q,q) }[/math].
They obey the orthogonality relation
- [math]\displaystyle{ \int_{cq}^q P_m(x;c;q)P_n(x;c;q) \, dx=q(1-c)\frac{1-q}{1-q^{2n+1}}\frac{(c^{-1}q;q)_n}{(cq;q)_n}(-cq^2)^n q^{n \choose 2}\delta_{mn} }[/math]
and have the limiting behavior
- [math]\displaystyle{ \displaystyle\lim_{q \to 1} P_n(x;0;q)=P_n(2x-1) }[/math]
where [math]\displaystyle{ P_n }[/math] is the [math]\displaystyle{ n }[/math]th Legendre polynomial.[citation needed]
References
- ↑ Roelof Koekoek, Peter Lesky, Rene Swattouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues, p 443, Springer
Original source: https://en.wikipedia.org/wiki/Big q-Legendre polynomials.
Read more |