Biography:Alper Erturk
Alper Erturk (born April 3, 1982) is a mechanical engineer and the Woodruff Professor in the George W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology.[1]
Research
Erturk leads the Smart Structures and Dynamical Systems Laboratory[2] at Georgia Tech. His publications are mostly in the areas of dynamics, vibration, and wave propagation involving smart materials and metamaterials.[3] Erturk made fundamental contributions in the field of energy harvesting from dynamical systems. His distributed-parameter piezoelectric energy harvester models[4][5] have been widely used by many research groups. He was one of the first researchers to explore nonlinear dynamic phenomena for frequency bandwidth enhancement in energy harvesting, specifically by using a bistable Duffing oscillator with electromechanical coupling, namely the piezomagnetoelastic energy harvester.[6] His early energy harvesting work also included the use of aeroelastic flutter to enable scalable airflow energy harvesting through piezoaeroelastic systems.[7] His collaborative work on flexoelectricity[8] established a framework to exploit strain gradient-induced polarization in elastic dielectrics for enhanced electricity generation at the nanoscale.[9]
Erturk's group also contributed to smart material-based bio-inspired aquatic locomotion by developing the first untethered piezoelectric swimmer[10] and explored fluid-structure interaction via underwater actuation of piezoelectric cantilevers.[11][12] Their recent efforts resulted in multifunctional piezoelectric concepts for bio-inspired swimming and energy harvesting.[13]
Another research topic explored by his group is wireless power and data transfer using ultrasound waves.[14][15] More recently, Erturk and collaborators investigated the leveraging of guided waves in cranial and transcranial ultrasound.[16][17][18]
Erturk and collaborators also explored metamaterials and phononic crystals for elastic and acoustic wave phenomena. They developed and experimentally tested some of the first 2D elastic wave[19][20] and 3D bulk acoustic wave[21][22] lenses, locally resonant metamaterial-based structural theories and experiments,[23] including programmable piezoelectric metamaterials and metastructures.[24]
Awards
- Elected Fellow of SPIE (2020)[25]
- SEM James W. Dally Young Investigator Award (2020)[26]
- Elected Fellow of ASME (2017)[27]
- ASME C.D. Mote Jr. Early Career Award (2017)[28][29]
- TASSA Young Scholar Award - Junior Faculty Level (2016)[30]
- ASME Gary Anderson Early Achievement Award (2015)[31][32][33]
- ASME Energy Harvesting Best Paper Award (2015, 2017)[34]
- National Science Foundation CAREER Award (2013)[35]
- Liviu Librescu Memorial Scholarship (2008)
- Parlar Foundation Thesis of the Year Award (2006)
References
- ↑ "Erturk | The George W. Woodruff School of Mechanical Engineering". http://www.me.gatech.edu/faculty/erturk.
- ↑ "Smart Structures & Dynamical Systems Laboratory". http://www.ssdsl.gatech.edu/.
- ↑ "Alper Erturk - Google Scholar Citations". https://scholar.google.com/citations?user=OwypZqcAAAAJ&hl=en.
- ↑ Erturk, A.; Inman, D. J. (2008). "A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters". Journal of Vibration and Acoustics 130 (4): 041002. doi:10.1115/1.2890402.
- ↑ Erturk, A; Inman, D J (2009). "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations". Smart Materials and Structures 18 (2): 025009. doi:10.1088/0964-1726/18/2/025009. Bibcode: 2009SMaS...18b5009E.
- ↑ Erturk, A.; Hoffmann, J.; Inman, D. J. (2009). "A piezomagnetoelastic structure for broadband vibration energy harvesting". Applied Physics Letters 94 (25): 254102. doi:10.1063/1.3159815. Bibcode: 2009ApPhL..94y4102E.
- ↑ Erturk, A.; Vieira, W. G. R.; De Marqui, C.; Inman, D. J. (2010). "On the energy harvesting potential of piezoaeroelastic systems". Applied Physics Letters 96 (18): 184103. doi:10.1063/1.3427405. Bibcode: 2010ApPhL..96r4103E. http://www.producao.usp.br/bitstream/BDPI/14651/1/art_ERTURK_On_the_energy_harvesting_potential_of_piezoaeroelastic_2010.pdf.
- ↑ Deng, Qian; Kammoun, Mejdi; Erturk, Alper; Sharma, Pradeep (2014). "Nanoscale flexoelectric energy harvesting". International Journal of Solids and Structures 51 (18): 3218–25. doi:10.1016/j.ijsolstr.2014.05.018.
- ↑ Moura, Adriane G.; Erturk, Alper (2017). "Electroelastodynamics of flexoelectric energy conversion and harvesting in elastic dielectrics". Journal of Applied Physics 121 (6): 064110. doi:10.1063/1.4976069. Bibcode: 2017JAP...121f4110M.
- ↑ Cen, L; Erturk, A (2013). "Bio-inspired aquatic robotics by untethered piezohydroelastic actuation". Bioinspiration & Biomimetics 8 (1): 016006. doi:10.1088/1748-3182/8/1/016006. PMID 23348365. Bibcode: 2013BiBi....8a6006C.
- ↑ Shahab, S; Erturk, A (2016). "Electrohydroelastic Euler–Bernoulli–Morison model for underwater resonant actuation of macro-fiber composite piezoelectric cantilevers". Smart Materials and Structures 25 (10): 105007. doi:10.1088/0964-1726/25/10/105007. Bibcode: 2016SMaS...25j5007S.
- ↑ Demirer, E; Wang, Y; Erturk, A; Alexeev, A (2021). "Effect of actuation method on hydrodynamics of elastic plates oscillating at resonance". Journal of Fluid Mechanics 910: A4. doi:10.1088/0964-1726/25/10/105007.
- ↑ Tan, D; Wang, Y; Kohtanen, E; Erturk, A (2021). "Trout-like multifunctional piezoelectric robotic fish and energy harvester". Bioinspiration & Biomimetics 16 (4): 046024. doi:10.1088/1748-3190/ac011e. PMID 33984855. Bibcode: 2013BiBi....8a6006C.
- ↑ Shahab, S.; Gray, M.; Erturk, A. (2015). "Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment". Journal of Applied Physics 117 (10): 787–798. doi:10.1016/j.ultrasmedbio.2020.11.019. PMID 33358510. Bibcode: 2015JAP...117j4903S.
- ↑ Sugino, C.; Gerbe, R.; Reinke, C.; Ruzzene, M.; Erturk, A.; El-Kady, I. (2020). "Ultrasonic Communication through a Metallic Barrier: Transmission Modeling and Crosstalk Minimization". 2020 IEEE International Ultrasonics Symposium (IUS). 20154561. pp. 1–3. doi:10.1109/IUS46767.2020.9251623. ISBN 978-1-7281-5448-0.
- ↑ Mazzotti, M; Sugino, C; Kohtanen, E; Erturk, A; Ruzzene, M (2021). "Experimental identification of high order Lamb waves and estimation of the mechanical properties of a dry human skull". Ultrasonics 113: 106343. doi:10.1016/j.ultras.2020.106343. PMID 33540235.
- ↑ Sugino, C; Ruzzene, M; Erturk, A (2021). "Experimental and Computational Investigation of Guided Waves in a Human Skull". Ultrasound in Medicine and Biology 47 (3): 787–798. doi:10.1063/1.4914130. PMID 33358510.
- ↑ Mazzotti, M; Kohtanen, E; Erturk, A; Ruzzene, M (2021). "Radiation Characteristics of Cranial Leaky Lamb Waves". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 68 (6): 2129–2140. doi:10.1109/TUFFC.2021.3057309. PMID 33544671.
- ↑ Tol, S.; Degertekin, F. L.; Erturk, A. (2016). "Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting". Applied Physics Letters 109 (6): 063902. doi:10.1063/1.4960792. Bibcode: 2016ApPhL.109f3902T.
- ↑ Tol, S.; Degertekin, F. L.; Erturk, A. (2017). "Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting". Applied Physics Letters 111 (1): 013503. doi:10.1063/1.4991684. Bibcode: 2017ApPhL.111a3503T.
- ↑ Allam, A.; Sabra, K.; Erturk, A. (2020). "3D-Printed Gradient-Index Phononic Crystal Lens for Underwater Acoustic Wave Focusing". Physical Review Applied 13 (6): 064064. doi:10.1103/PhysRevApplied.13.064064. Bibcode: 2020PhRvP..13f4064A.
- ↑ Allam, A.; Sabra, K.; Erturk, A. (2021). "Sound energy harvesting by leveraging a 3D-printed phononic crystal lens". Applied Physics Letters 118 (10): 103504. doi:10.1063/5.0030698. Bibcode: 2021ApPhL.118j3504A.
- ↑ Sugino, Christopher; Leadenham, Stephen; Ruzzene, Massimo; Erturk, Alper (2016). "On the mechanism of bandgap formation in locally resonant finite elastic metamaterials". Journal of Applied Physics 120 (13): 134501. doi:10.1063/1.4963648. Bibcode: 2016JAP...120m4501S.
- ↑ Sugino, Christopher; Leadenham, Stephen; Ruzzene, Massimo; Erturk, Alper (2020). "Digitally Programmable Resonant Elastic Metamaterials". Physical Review Applied 13 (6): 061001. doi:10.1103/PhysRevApplied.13.061001. Bibcode: 2020PhRvP..13f1001S.
- ↑ "SPIE News". https://spie.org/news/spie-2020-new-fellows-cohort-includes-marcelo-dapino-alper-erturk-and-zoubeida-ounaies.
- ↑ "SEM Awards". https://sem.org/awardsdally.
- ↑ "ASME Newsmakers". https://www.asme.org/about-asme/news/asme-news/newsmakers#erturk.
- ↑ "ASME Newsmakers". https://www.asme.org/about-asme/news/asme-news/newsmakers#erturk.
- ↑ "ME's Alper Erturk Awarded a Second ASME Award; College of Engineering". https://coe.gatech.edu/news/mes-alper-erturk-awarded-second-asme-award.
- ↑ "TASSA Website | 2016". http://www.tassausa.org/Newsroom/item/2312/TASSA-2016-Young-Scholar-Awards.
- ↑ "ASME Newsmakers". https://www.asme.org/about-asme/news/asme-news/newsmakers#erturk.
- ↑ "ASME Newsmakers". https://www.asme.org/about-asme/get-involved/honors-awards/unit-awards/gary-anderson-early-achievement-award.
- ↑ "ME's Alper Erturk to Receive ASME Gary Anderson Early Achievement Award | College of Engineering". 2015-03-16. https://coe.gatech.edu/news/mes-alper-erturk-receive-asme-gary-anderson-early-achievement-award.
- ↑ "Erturk Receives 2 ASME Awards | The George W. Woodruff School of Mechanical Engineering". http://www.me.gatech.edu/news/erturkasme15.
- ↑ "Erturk Receives NSF CAREER Award | The George W. Woodruff School of Mechanical Engineering". http://www.me.gatech.edu/featured_erturknsfcareeraward.
Original source: https://en.wikipedia.org/wiki/Alper Erturk.
Read more |