Biography:Hans Peter Schlickewei
From HandWiki
Short description: German mathematician
Hans Peter Schlickewei (born 1947) is a German mathematician, specializing in number theory and, in particular, the theory of transcendental numbers.
Schlickewei received his doctorate in 1975 at the University of Freiburg under the supervision of Theodor Schneider.[1] Schlickewei is a professor at the University of Marburg.[2]
He proved in 1976 the p-adic generalization of the subspace theorem of Wolfgang M. Schmidt.[3] Schlickewei's theorem implies the Thue-Siegel-Roth theorem, whose p-adic analogue was already proved in 1958 by David Ridout.[4]
In 1998, Schlickewei was an invited speaker with talk The Subspace Theorem and Applications at the International Congress of Mathematicians in Berlin.[5]
Selected publications
- Schlickewei, H. P. (1976). "Die p-adische Verallgemeinerung des Satzes von Thue-Siegel-Roth-Schmidt". J. Reine Angew. Math. 1976 (288): 86–105. doi:10.1515/crll.1976.288.86.
- Schinzel, A.; Schlickewei, H.; Schmidt, W. (1980). "Small solutions of quadratic congruences and small fractional parts of quadratic forms". Acta Arithmetica 37 (1): 241–248. doi:10.4064/aa-37-1-241-248. https://eudml.org/doc/205697.
- Schlickewei, H. P. (1990). "S-unit equations over number fields". Invent. Math. 102: 95–107. doi:10.1007/BF01233421. Bibcode: 1990InMat.102...95S.
- Van Der Poorten, A. J.; Schlickewei, H. P. (1991). "Additive relations in fields". Journal of the Australian Mathematical Society, Series A 51: 154–170. doi:10.1017/S144678870003336X.
- Schlickewei, H. P. (1993). "Multiplicities of algebraic linear recurrrences". Acta Mathematica 170 (2): 151–180. doi:10.1007/BF02392784.
- Schlickewei, H. P. (1996). "Multiplicities of recurrence sequences". Acta Mathematica 176 (2): 171–243. doi:10.1007/BF02551582. https://projecteuclid.org/download/pdf_1/euclid.acta/1485890938.
- Schlickewei, H. P. (1997). "The multiplicity of binary recurrences". Invent. Math. 129 (11): 11–36. doi:10.1007/s002220050156. Bibcode: 1997InMat.129...11S.
- Schlickewei, H. P.; Schmidt, W. P. (2000). "The number of solutions of polynomial-exponential equations". Compositio Math. 120 (2): 193–225. doi:10.1023/A:1001719425893.
- Evertse, J.-H.; Schlickewei, H. P.; Schmidt, W. M. (2002). "Linear Equations in Variables which Lie in a Multiplicative Group". The Annals of Mathematics 155 (3): 807. doi:10.2307/3062133.
- Approximation of algebraic numbers, pp. 107–170 in: D. Masser, Yu. V. Nesterenko, W. Schmidt, M. Waldschmidt (eds.): Diophantine Approximation, Lectures CIME Summer School 2000, Springer 2003
References
- ↑ Hans Peter Schlickewei at the Mathematics Genealogy Project
- ↑ "Prof. Dr. Hans Peter Schlickewei". https://www.mathematik.uni-marburg.de/~hps/.
- ↑ Schlickewei, Hans Peter (1977). "On norm form equations". J. Number Theory 9 (3): 370–380. doi:10.1016/0022-314X(77)90072-5.
- ↑ Ridout, David (1958). "The p-adic generalization of the Thue-Siegel-Roth theorem". Mathematika 5 (1): 40–48. doi:10.1112/S0025579300001339.
- ↑ Schlickewei, Hans Peter (1998). "The subspace theorem and applications". In: Proceedings of the International Congress of Mathematicians, 1998, Berlin. 2. pp. 197–205. https://www.elibm.org/ft/10011655000.
External links
- "003 On Polynomial Exponential Equations by H. P. Schlickewei, Philipps-University Marburg". matsciencechannel. 26 December 2013. https://www.youtube.com/watch?v=6at_VZ5OWsc.
Original source: https://en.wikipedia.org/wiki/Hans Peter Schlickewei.
Read more |