Biography:Harald J. W. Mueller-Kirsten

From HandWiki
Short description: German physicist
Harald J.W. Mueller-Kirsten
Harald J.W. Müller-Kirsten.jpg
H.J.W. Müller-Kirsten
Born (1935-05-19) May 19, 1935 (age 89)
Halle (Saale), Germany Flag of Germany.svg
NationalityGermany Flag of Germany.svg
Alma materUniversity of Western Australia
Known forAsymptotic expansions of Functions of mathematical physics and their eigenvalues, Quantum field theory, Periodic instantons, Supersymmetry
Scientific career
FieldsTheoretical Physics
Doctoral advisorRobert Balson Dingle

Harald J.W. Mueller-Kirsten (born 1935) is a German theoretical physicist specializing in Theoretical particle physics and Mathematical physics.

Education and career

Müller-Kirsten obtained the B.Sc. (First Class Honours) in 1957 and the Ph.D. in 1960 from the University of Western Australia in Perth, where his doctoral advisor was Robert Balson Dingle.[1] Thereafter he was postdoc at the Ludwig Maximilians University in Munich (Institute of F. Bopp) and obtained the habilitation there in 1971. Müller-Kirsten was an assistant professor at the American University of Beirut in 1967, NATO-Fellow at the Lawrence Radiation Laboratory in Berkeley in 1970, and Max-Kade-Foundation Fellow at SLAC, Stanford in 1974–75. In 1972 he was appointed Wissenschaftlicher Rat and Professor (H2) at the University of Kaiserslautern, then there in 1976 University Professor (C2) and in 1995 University Professor (C3).

Research achievements

  1. Asymptotic expansions of Mathieu functions, spheroidal wave functions, Lamé functions and ellipsoidal wave functions and their eigenvalues.[2]
  2. Asymptotic expansions of Regge poles for Yukawa potentials (in agreement with Langer-corrected WKB calculations).[3]
  3. Eigenvalue and level-splitting formula for double-well potentials.[4]
  4. Path integral method applied to quartic and cosine potentials.[5]
  5. Discovery that for quartic and cosine potentials the equation of small fluctuations around the classical solution is a Lamé equation.[6]
  6. Derivation of S-matrix and absorptivity for the singular potential [math]\displaystyle{ 1/r^4 }[/math] (cf. modified Mathieu equation) and application to string theory.[7]
  7. Construction and quantization of gauge theory models,[8] Faddeev–Jackiw quantization of systems with constraints,[9]

Books

  • with Armin Wiedemann: Supersymmetry, An Introduction with Conceptual and Calculational Details, World Scientific, Singapore, 1987, ISBN:9971-5-0354-9, 2nd ed.as Introduction to Supersymmetry (=World Scientific Lecture Notes in Physics, Nr. 80), loc. cit. 2010, ISBN:978-981-4293-41-9.
  • Electrodynamics, An Introduction including Quantum Effects, World Scientific, Hackensack NJ, 2004, ISBN:981-238-807-9, 2nd ed. Electrodynamicsloc. cit. 2011, ISBN:978-981-4340-73-1.
  • Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, World Scientific, Singapore, 2006, ISBN:981-256-692-9, 2nd ed., World Scientific, Hackensack, NJ, 2012, ISBN:978-981-4397-73-5.
  • Classical Mechanics and Relativity, World Scientific, Hackensack NJ, 2008, ISBN:978-981-283-251-1.
  • Basics of Statistical Physics, A Bachelor Degree Introduction, World Scientific, Hackensack NJ, 2010, ISBN:978-981-4287-22-7, 2nd ed. as Basics of Statistical Physics, loc.cit. 2013, ISBN:978-981-4449-53-3, 3rd ed., 2022, ISBN:978-981-125-609-7.

Outside of physics

  • In his book Rätsel Wahrheit[10] (Puzzle Truth) Müller-Kirsten deals with university and society related topics such as the university as a competitive society and problems of freedom of speech and opinion, Verlag Haag+Herchen GmbH, 2017, ISBN:978-3-89846-783-4.
  • Henry Kendall: Ausgewählte Gedichte, Translation into German of Selected Poems by Henry Kendall (after Selected Poems by Henry Kendall, chosen by his son Frederick C. Kendall, Angus and Robertson Ltd., 1927), Verlag Haag+Herchen GmbH, 2021, ISBN:978-3-89846-878-7.

References

  1. "Archived copy". https://www.rse.org.uk/cms/files/fellows/obits_alpha/dingle_robert.pdf. 
  2. R.B. Dingle and H.J.W. Müller, J. reine angew. Math. 211 (1962) 11–32, 216 (1964) 123–133; H.J.W. Müller, J. reine angew. Math. 211 (1962) 33.47, 211 (1962) 179–190, 212 (1963) 26–48; H.J.W. Müller, Math. Nachr. 31 (1966) 89–101, 32 (1966) 49–62, 32 (1966) 157–374.
  3. H.J.W. Müller, Ann. d. Phys. (Leipzig) 15 (1965) 395–411.; H.J.W. Müller and K. Schilcher, J. Math. Phys. 9 (1968) 255–259.
  4. H.J.W. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, World Scientific Singapore, 2nd ed., 2012, ISBN:978-981-4397-73-5, pp. 524–527; J.-Q. Liang and H.J.W. Müller-Kirsten, Anharmonic Oscillator Equations: Treatment Parallel to Mathieu Equation, quant-ph/0407235; P. Achuthan, H.J.W. Müller-Kirsten and A. Wiedemann, Fortschr. Physik 38 (1990) 77.
  5. J.-Q. Liang and H.J.W. Müller-Kirsten, Phys. Rev. D46 (1992) 4685, D50 (1994) 6519, D51 (1995) 718.
  6. J.-Q. Liang, H.J.W. Müller-Kirsten and D.H. Tchrakian, Phys. Lett. B282 (1992) 105.
  7. H.H. Aly, H.J.W. Müller-Kirsten and N. Vahedi-Faridi, J. Math. Phys. 16 (1975) 961; R. Manvelyan, H.J.W. Müller-Kirsten, J.-Q. Liang and Yunbo Zhang, Nucl. Phys. B579 (2000) 177, hep-th/0001179; D.K. Park, S.N. Tamaryan, H.J.W. Müller-Kirsten and Jian-Zu Zhang, Nucl. Phys. B594 (2001) 243, hep-th/0005165.
  8. Usha Kulshreshtha, Daya Shankar Kulshreshtha, Harald J.W. Mueller-Kirsten, ``A Gauge invariant theory of chiral bosons: Wess–Zumino term, Hamiltonian and BRST formulations``, Zeit. Phys. C 60 (1993) 427–431.
  9. Daya Shankar Kulshreshtha, Harald J.W. Mueller-Kirsten, ``Quantization of systems with constraints: The Faddeev–Jackiw method versus Dirac's method applied to superfields``, Phys. Rev. D43 (1991) 3376–3383; ``Faddeev-Jackiw quantization of selfdual fields``, Phys. Rev. D 45 (1992) 393–397.
  10. H.J.W. Müller-Kirsten, Rätsel Wahrheit, Verlag Haag+Herchen GmbH, 2017, ISBN:978-3-89846-783-4.

External links

new: