Biography:Norman J. Pullman
Norman J. Pullman | |
---|---|
Nationality | American |
Alma mater | Syracuse University |
Known for | Number theory Linear algebra Tournament theory Matrix theory |
Scientific career | |
Fields | Mathematics |
Institutions | McGill University |
Thesis | On the number of positive entries in the powers of a non-negative matrix [1] (1962) |
Norman J. Pullman (number theory, matrix theory, linear algebra, and theory of tournaments.[1][2][3]
March 31, 1931 – May 28, 1999) was a mathematician, professor of mathematics, and Doctor of Mathematics, who specialized inCareer
He earned an M.A. degree in mathematics from Harvard University, and in 1962, he was awarded the Doctorate degree of Mathematics from Syracuse University. [2]
From 1962 to 1965, he was professor of Mathematics at McGill University. And in 1965 he was awarded a postdoctoral fellowship at University of Alberta.[2]
In 1965 he started to work at the faculty of Queen's University, and held a professorship position since 1971.[2]
He lectured in professional meetings for the American Mathematical Society and the Australian Mathematical Society.
He was a visiting scholar for Curtin University of Technology in a great many occasions, and had a professional association with the institution.
During his career, he supervised mathematicians like Dominique de Caen, Rolf S. Rees, and Bill Jackson, among others.[2]
His research included contributions in matrix theory, linear algebra, and theory of tournaments.[2]
Academic publications
- Leroy B. Beasley; Sylvia D. Monson; Norman J. Pullman (1999). "Linear operators that strongly preserve graphical properties of matrices – II". Discrete Mathematics 195 (1–3): 53–66. doi:10.1016/S0012-365X(98)00164-2.
- Stephen J. Kirkland; Norman J. Pullman (1996). "The polytope of generalized tournament matrices with a common integral score vector". Ars Combinatoria 44.
- S. D. Monson; N. J. Pullman; R. Rees (1995). A survey of clique and biclique coverings and factorizations of (0; 1)-matrices.
- N. J. Pullman (1995). "A bound on the exponent of a primitive matrix using Boolean rank". Linear Algebra and Its Applications 217: 101–116. doi:10.1016/0024-3795(92)00003-5. http://purl.umn.edu/1876.
- David A. Gregory; Norman Pullman; Stephen J. Kirkl (1994). "On the dimension of the algebra generated by a boolean matrix". Linear & Multilinear Algebra 38 (1): 131–144. doi:10.1080/03081089508818346.
- Leroy B. Beasley; Norman J. Pullman (1992). "Linear operators that strongly preserve graphical properties of matrices". Discrete Mathematics 104 (2): 143–157. doi:10.1016/0012-365X(92)90329-E.
- LeRoy Beasley; Norman Pullman (1992). "Linear operators that strongly preserve the index of imprimitivity". Linear & Multilinear Algebra 31 (1): 267–283. doi:10.1080/03081089208818139. http://purl.umn.edu/1735.
- Stephen Kirkland; Norman Pullman (1992). "Linear operators preserving invariants of nonbinary boolean matrices". Linear & Multilinear Algebra 33 (3): 295–300. doi:10.1080/03081089308818200.
- John Maybee; Norman Pullman (1990). "Tournament matrices and their generalizations, I". Linear & Multilinear Algebra 28 (1): 57–70. doi:10.1080/03081089008818030.
- L. Caccetta; N. J. Pullman (1990). "Regular graphs with prescribed chromatic number". Journal of Graph Theory 14 (1): 65–71. doi:10.1002/jgt.3190140107.
- Leroy Beasley; Norman Pullman (1990). "Linear operators strongly preserving digraphs whose maximum cycle length". Linear & Multilinear Algebra 28 (1): 111–117. doi:10.1080/03081089008818035.
- LeRoy B. Beasley; Norman J. Pullman (1989). "Linear operators that strongly preserve primitivity". Linear & Multilinear Algebra 25 (3): 205–213. doi:10.1080/03081088908817942.
- L. B. Beasley; N. J. Pullman (1988). Semiring rank versus column rank.
- K. F. Jones; J. R. Lundgren; N. J. Pullman; R. Rees (1988). A note on the biclique covering numbers of Kn n Km and complete t-partite graphs.
- Norman J. Pullman; Miriam Stanford (1988). "Singular (0,1) matrices with constant row and column sums". Linear Algebra and Its Applications 106: 195–208. doi:10.1016/0024-3795(88)90028-6.
- Norman J. Pullman (1987). "Review of incline algebra and applications, by Z-Q Cao, K.H. Kim, and F.W. Roush". Linear Algebra and Its Applications 90 (1): 239–240. doi:10.1016/0024-3795(87)90316-8.
- L. B. Beasley and; D. A. Gregory and; N. J. Pullman (1985). "Nonnegative rank-preserving operators". Linear Algebra and Its Applications 65 (1–3): 207–223. doi:10.1016/0024-3795(85)90098-9.
- L. B. Beasley and; N. J. Pullman (1984). "Boolean-rank-preserving operators and Boolean-rank-1 spaces". Linear Algebra and Its Applications 59 (1): 55–77. doi:10.1016/0024-3795(84)90158-7.
- L. Caccetta and; N. J. Pullman (1983). "On clique covering numbers of regular graphs". Ars Combinatoria.
- N. J. Pullman and; H. Shank and; W. D. Wallis (1982). "Clique coverings of graphs V: maximal-clique partitions". Bulletin of the Australian Mathematical Society 25 (3): 337–356. doi:10.1017/S0004972700005414.
- Pullman, Norman J. (1976). Matrix Theory and its Applications. M. Dekker. pp. 240. ISBN 9780824764203.
- Norman J. Pullman; N. Wormald (1983). "Regular graphs of prescribed odd girth". Utilitas Mathematica 24.
References
- ↑ 1.0 1.1 Norman J. Pullman at the Mathematics Genealogy Project
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 Pullman, N.J.; Rees, R.S. (1993). Graphs, Matrices, and Designs: Festschrift in Honor of Norman J. Pullman. Lecture Notes in Pure and Applied Mathematics Series. CRC Press Inc. ISBN 9780824787905. https://books.google.com/books?id=zuZFgYZqmkMC.
- ↑ David A. Gregory; Stephen J. Kirkland (1999). "Norman J. Pullman (1931–1999)". The Bulletin of the International Linear Algebra Society (McGill University) (23).
Original source: https://en.wikipedia.org/wiki/Norman J. Pullman.
Read more |