Biography:Paul S. Aspinwall
Paul Stephen Aspinwall (born 26.January 1964 in England) is a British theoretical physicist and mathematician, who works on string theory (including dualities, mirror symmetry, D-branes, and Calabi-Yau manifolds) and also algebraic geometry. Aspinwall received his early education at Bydales School, Marske-by-the-Sea and Prior Pursglove College, Guisborough. He then studied at the University of Oxford with a focus on theoretical elementary particle physics. He received his bachelor's degree in 1985 and his Ph.D. in 1991.[1] He is now a professor of mathematics and physics at Duke University in Durham, North Carolina.
In 1998 he was an Invited Speaker with talk (String theory and duality) at the ICM in Berlin.[2] In 1999 he was a Sloan Fellow.
Selected publications
- as editor: Dirichlet branes and mirror symmetry, Clay School on Geometry and String Theory, Cambridge 2002, Clay Mathematics Monographs, American Mathematical Society 2009
- Aspinwall, Paul S.; Greene, Brian R.; Morrison, David R. (1994). "Calabi-Yau moduli space, mirror manifolds and spacetime topology change in string theory". Nuclear Physics B (Elsevier BV) 416 (2): 414–480. doi:10.1016/0550-3213(94)90321-2. ISSN 0550-3213.
- with Brian Greene, David R. Morrison: Spacetime topology change: the physics of Calabi-Yau Moduli Space, in Strings 93, World Scientific 1995, Arxiv
- Aspinwall, Paul S. (2005). "D-branes on Calabi-Yau-manifolds". World Scientific. doi:10.1142/9789812775108_0001. ISBN 978-981-256-406-1.
- Compactification, Geometry and Duality: N=2, TASI Lectures 1999, Arxiv
- K3 surfaces and string duality, TASI Lectures 1996, World Scientific 1997, Arxiv
- Aspinwall, Paul S (1996). "Enhanced gauge symmetries and Calabi-Yau threefolds". Physics Letters B (Elsevier BV) 371 (3-4): 231–237. doi:10.1016/0370-2693(96)00003-2. ISSN 0370-2693.
- Aspinwall, Paul S. (1995). "Enhanced gauge symmetries and K3 surfaces". Physics Letters B (Elsevier BV) 357 (3): 329–334. doi:10.1016/0370-2693(95)00957-m. ISSN 0370-2693.
- Aspinwall, Paul S. (1996). "Some relationships between dualities in string theory". Nuclear Physics B - Proceedings Supplements (Elsevier BV) 46 (1-3): 30–38. doi:10.1016/0920-5632(96)00004-7. ISSN 0920-5632.
- Aspinwall, Paul S.; Morrison, David R. (1993). "Topological field theory and rational curves". Communications in Mathematical Physics (Springer Science and Business Media LLC) 151 (2): 245–262. doi:10.1007/bf02096768. ISSN 0010-3616.
- Aspinwall, Paul S; Louis, Jan (1996). "On the ubiquity of K3 fibrations in string duality". Physics Letters B (Elsevier BV) 369 (3-4): 233–242. doi:10.1016/0370-2693(95)01541-8. ISSN 0370-2693.
- Aspinwall, Paul S.; Morrison, David R. (1997). "Point-like instantons on K3 orbifolds". Nuclear Physics B (Elsevier BV) 503 (3): 533–564. doi:10.1016/s0550-3213(97)00516-6. ISSN 0550-3213.
- Aspinwall, Paul S.; Greene, Brian R.; Morrison, David R. (1993). "Multiple mirror manifolds and topology change in string theory". Physics Letters B (Elsevier BV) 303 (3-4): 249–259. doi:10.1016/0370-2693(93)91428-p. ISSN 0370-2693.
- Aspinwall, Paul S.; Gross, Mark (1996). "The SO(32) heterotic string on a K3 surface". Physics Letters B (Elsevier BV) 387 (4): 735–742. doi:10.1016/0370-2693(96)01095-7. ISSN 0370-2693.
- Aspinwall, Paul S. (1997). "M-theory versus F-theory pictures of the heterotic string". Advances in Theoretical and Mathematical Physics (International Press of Boston) 1 (1): 127–147. doi:10.4310/atmp.1997.v1.n1.a4. ISSN 1095-0761.
- Aspinwall, P.S.; Lütken, C.A. (1991). "Quantum algebraic geometry of superstring compactifications". Nuclear Physics B (Elsevier BV) 355 (2): 482–510. doi:10.1016/0550-3213(91)90123-f. ISSN 0550-3213.
- The moduli space of N=2 superconformal field theories, in: Gava (ed.), 1994 summer school in high energy physics and cosmology, World Scientific 1995, Arxiv
References
- ↑ Paul S. Aspinwall at the Mathematics Genealogy Project
- ↑ Aspinwall, P. S. (1998). "String theory and duality". Proceedings of the ICM. vol. 2. 229–238. Bibcode: 1998math......9004A.
External links