Biography:Robert W. Boyd

From HandWiki
Short description: American physicist
Robert Boyd
Robert Boyd-portrait-2010.jpg
Boyd in 2010
Born
Robert William Boyd

(1948-03-08) March 8, 1948 (age 76)[1]
Buffalo, New York, U.S.
NationalityAmerican
Alma mater
Awards
  • Charles Hard Townes Award (2016)
  • Arthur L. Schawlow Prize in Laser Science (2016)
  • Humboldt Prize (2010)
  • Willis E. Lamb Award (2009)
Scientific career
Fields
Institutions
ThesisAn Infrared Upconverter for Astronomical Imaging (1977)
Doctoral advisorCharles H. Townes[3][4]
Website

Robert William Boyd (born 8 March 1948) is an American physicist noted for his work in optical physics and especially in nonlinear optics. He is currently the Canada Excellence Research Chair Laureate in Quantum Nonlinear Optics based at the University of Ottawa, professor of physics cross-appointed to the school of electrical engineering and computer science at the University of Ottawa, and professor of optics and professor of physics at the University of Rochester.[5][6][7][8][9]

Education and career

Boyd was born in Buffalo, New York. He received a Bachelor of Science degree in physics from the Massachusetts Institute of Technology (MIT) and a Ph.D. in physics from the University of California, Berkeley. His doctoral thesis was supervised by Charles Townes[3][4][10] and involves the use of nonlinear optical techniques in infrared detection for astronomy. Boyd joined the faculty of the University of Rochester in 1977, and in 2001 became the M. Parker Givens Professor of Optics and professor of physics. In 2010 he became professor of physics and Canada Excellence Research Chair in quantum nonlinear optics at the University of Ottawa. His research interests include studies of “slow” and “fast” light propagation, quantum imaging techniques, nonlinear optical interactions, studies of the nonlinear optical properties of materials, and the development of photonic devices including photonic biosensors. Boyd has written two books, co-edited two anthologies, published over 500 research papers, and been awarded five patents. He is the 2009 recipient of the Willis E. Lamb Award for Laser Science and Quantum Optics and the 2016 recipient of the Charles H Townes Award. He is a fellow of the American Physical Society (APS), the Optical Society of America (OSA), the Institute of Electrical and Electronics Engineers (IEEE) and SPIE. He has chaired the Division of Laser Science of APS and has been a director of OSA. Boyd has served as a member of the board of editors of Physical Review Letters and of the board of reviewing editors of Science magazine. He has an h-index of 111 (according to Google Scholar[2]).

Research

Boyd with his slow light in ruby experiment

Boyd's research interests are in nonlinear optics, photonics, optical physics, nanophotonics, and quantum optics.[2]

Slow and fast light

Boyd has made significant contributions to the research field known colloquially as slow and fast light. Shortly after the development of great interest in this field in 2000, he realized that it is possible to produce slow and fast-light effects in room-temperature solids.[11][12][13] Until that time, most workers had made use of systems of free atoms such as atomic vapors and Bose-Einstein condensates to control the group velocity of light. The realization that slow light effects can be obtained in room temperature solids has allowed the development of many applications of these effects in the field of photonics. In particular, with his students he pioneered the use of coherent population oscillations as a mechanism for producing slow and fast light in room temperature solids.[11][12][13] His work has led to an appreciation of the wide variety of exotic effects that can occur in the propagation of light through such structures, including the observation of “backwards” light propagation.[14] Boyd has also been instrumental in developing other slow light methods such as stimulated Brillouin scattering.[15] More recently, he has moved on to the investigation of applications of slow light for buffering[16] and signal regeneration.[17] He also came to the realization that slow light methods can be used to obtain enormous enhancements in the resolution of interferometric spectrometers,[18][19] and he is currently working on the development of spectrometers based on this principle. As just one indication of the impact of Robert's work on slow and fast light, his Science paper[12] has been cited 523 times.

Quantum imaging

Boyd has been instrumental in the creation and development of the field of quantum imaging. This field utilizes quantum features of light, such as squeezing and entanglement, to perform image formation with higher resolution or sensitivity than can be achieved through use of classical light sources. His research contributions in this area have included studies of the nature of position and momentum entanglement,[20] the ability to impress many bits of information onto a single photon,[21] and studies to identify the quantum or classical nature of coincidence imaging.[22][23] This latter work has led the community to realize that classical correlations can at times be used to mimic effects that appear to be of a quantum origin, but using much simpler laboratory implementations.

Local field effects and the measurement of the Lorentz red shift

Boyd has performed fundamental studies of the nature of local field effects in optical materials including dense atomic vapors. A key result of this work was the first measurement[24] of the Lorentz red shift, a shift of the atomic absorption line as a consequence of local field effects. This red shift had been predicted by Lorentz in the latter part of the nineteenth century, but had never previously been observed experimentally. In addition to confirming this century-old prediction, this work is significant in confirming the validity of the Lorentz local-field formalism even under conditions associated with the resonance response of atomic vapors.

Development of composite nonlinear optical materials

Boyd has taken a leading role in exploiting local field effects to tailor the nonlinear optical response of composite optical materials and structures. Along with John Sipe, he predicted that composite materials could possess a nonlinear response exceeding those of their constituents[25] and demonstrated this enhanced nonlinear optical response in materials including nonlinear optical materials,[26] electrooptic materials,[27] and photonic bandgap structures.[28] Similar types of enhancement can occur for fiber and nanofabricated ring-resonator systems,[29] with important applications in photonic switching[30] and sensing of biological pathogens.[31]

Foundations of nonlinear optics

Boyd has also made contributions to the overall growth of the field of nonlinear optics.[32] Perhaps his single largest contribution has been in terms of his textbook Nonlinear Optics.[33] The book has been commended for its pedagogical clarity. It has become the standard reference work in this area, and thus far has sold over 12,000 copies. Moreover, in the 1980s he performed laboratory and theoretical studies of the role of Rabi oscillations in determining the nature of four-wave mixing processing in strongly driven atomic vapors.[34][35] This work has had lasting impact on the field with one particular paper having been cited 293 times.[34]

Awards and honors

Publications

Boyd's work has been widely published in books and peer-reviewed scientific journals, including Science,[12][13][38][39][40][41][42][43][44][45] Nature,[46][47] and Physical Review Letters.[15]

Books

References

  1. American Men and Women of Science, Thomson Gale, 2004.
  2. 2.0 2.1 2.2 Robert W. Boyd publications indexed by Google Scholar
  3. 3.0 3.1 Boyd, Robert (2015). "Charles H. Townes (1915-2015) Laser co-inventor, astrophysicist and US presidential adviser". Nature 519 (7543): 292. doi:10.1038/519292a. PMID 25788091. Bibcode2015Natur.519..292B. 
  4. 4.0 4.1 Boyd, R. W.; Townes, C. H. (1977). "An infrared upconverter for astronomical imaging". Applied Physics Letters 31 (7): 440. doi:10.1063/1.89733. Bibcode1977ApPhL..31..440B. 
  5. "Department of Physics, University of Ottawa". University of Ottawa. https://science.uottawa.ca/physics/people/boyd-robert. 
  6. "The Institute of Optics, University of Rochester". University of Rochester. http://www.hajim.rochester.edu/optics/people/faculty/boyd_robert/index.html. 
  7. "List of Canada Excellence Research Chairs Laureates". CERC. https://www.cerc.gc.ca/chairholders-titulaires/former-ancien-eng.aspx. 
  8. Robert W. Boyd's publications indexed by the Scopus bibliographic database. (Subscription content?)
  9. "uOttawa Faculty of Engineering, list of cross-appointed faculty members" (in en). https://engineering.uottawa.ca/people/boyd-robert. 
  10. Boyd, Robert William (1977). An Infrared Upconverter for Astronomical Imaging (PhD thesis). University of California, Berkeley. OCLC 21059058. ProQuest 302864239.
  11. 11.0 11.1 Bigelow, M.; Lepeshkin, N.; Boyd, R. (2003). "Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature". Physical Review Letters 90 (11): 113903. doi:10.1103/PhysRevLett.90.113903. PMID 12688928. Bibcode2003PhRvL..90k3903B. 
  12. 12.0 12.1 12.2 12.3 Bigelow, M. S.; Lepeshkin, N. N.; Boyd, R. W. (2003). "Superluminal and slow light propagation in a room-temperature solid". Science 301 (5630): 200–2. doi:10.1126/science.1084429. PMID 12855803. Bibcode2003Sci...301..200B. 
  13. 13.0 13.1 13.2 Gehring, G. M.; Schweinsberg, A; Barsi, C; Kostinski, N; Boyd, R. W. (2006). "Observation of backward pulse propagation through a medium with a negative group velocity". Science 312 (5775): 895–7. doi:10.1126/science.1124524. PMID 16690861. Bibcode2006Sci...312..895G. 
  14. Schweinsberg, A.; Lepeshkin, N. N.; Bigelow, M. S.; Boyd, R. W.; Jarabo, S. (2006). "Observation of superluminal and slow light propagation in erbium-doped optical fiber". Europhysics Letters (EPL) 73 (2): 218–224. doi:10.1209/epl/i2005-10371-0. Bibcode2006EL.....73..218S. 
  15. 15.0 15.1 Okawachi, Y.; Bigelow, M.; Sharping, J.; Zhu, Z.; Schweinsberg, A.; Gauthier, D.; Boyd, R.; Gaeta, A. (2005). "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber". Physical Review Letters 94 (15): 153902. doi:10.1103/PhysRevLett.94.153902. PMID 15904146. Bibcode2005PhRvL..94o3902O. 
  16. Boyd, R.; Gauthier, D.; Gaeta, A.; Willner, A. (2005). "Maximum time delay achievable on propagation through a slow-light medium". Physical Review A 71 (2): 023801. doi:10.1103/PhysRevA.71.023801. Bibcode2005PhRvA..71b3801B. 
  17. Shi, Z.; Schweinsberg, A.; Vornehm, J. E.; Martínez Gámez, M. A.; Boyd, R. W. (2010). "Low distortion, continuously tunable, positive and negative time delays by slow and fast light using stimulated Brillouin scattering". Physics Letters A 374 (39): 4071–4074. doi:10.1016/j.physleta.2010.08.012. Bibcode2010PhLA..374.4071S. 
  18. Shi, Z.; Boyd, R. W.; Gauthier, D. J.; Dudley, C. C. (2007). "Enhancing the spectral sensitivity of interferometers using slow-light media". Optics Letters 32 (8): 915–7. doi:10.1364/OL.32.000915. PMID 17375152. Bibcode2007OptL...32..915S. 
  19. Shi, Z.; Boyd, R.; Camacho, R.; Vudyasetu, P.; Howell, J. (2007). "Slow-Light Fourier Transform Interferometer". Physical Review Letters 99 (24): 240801. doi:10.1103/PhysRevLett.99.240801. PMID 18233433. Bibcode2007PhRvL..99x0801S. https://digitalcommons.chapman.edu/scs_articles/835. 
  20. Howell, J. C.; Bennink, R. S.; Bentley, S. J.; Boyd, R. W. (2004). "Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion". Physical Review Letters 92 (21): 210403. doi:10.1103/PhysRevLett.92.210403. PMID 15245267. Bibcode2004PhRvL..92u0403H. http://pdfs.semanticscholar.org/23c7/02dc64233842eb030a31961958cd1900c570.pdf. 
  21. Broadbent, C. J.; Zerom, P.; Shin, H.; Howell, J. C.; Boyd, R. W. (2009). "Discriminating orthogonal single-photon images". Physical Review A 79 (3): 033802. doi:10.1103/PhysRevA.79.033802. Bibcode2009PhRvA..79c3802B. https://digitalcommons.chapman.edu/cgi/viewcontent.cgi?article=1855&context=scs_articles. 
  22. Bennink, R.; Bentley, S.; Boyd, R. (2002). ""Two-Photon" Coincidence Imaging with a Classical Source". Physical Review Letters 89 (11): 113601. doi:10.1103/PhysRevLett.89.113601. PMID 12225140. Bibcode2002PhRvL..89k3601B. 
  23. Bennink, R.; Bentley, S.; Boyd, R.; Howell, J. (2004). "Quantum and Classical Coincidence Imaging". Physical Review Letters 92 (3): 033601. doi:10.1103/PhysRevLett.92.033601. PMID 14753874. Bibcode2004PhRvL..92c3601B. https://digitalcommons.chapman.edu/cgi/viewcontent.cgi?article=1826&context=scs_articles. 
  24. Maki, J.; Malcuit, M.; Sipe, J.; Boyd, R. (1991). "Linear and nonlinear optical measurements of the Lorentz local field". Physical Review Letters 67 (8): 972–975. doi:10.1103/PhysRevLett.67.972. PMID 10045037. Bibcode1991PhRvL..67..972M. 
  25. Sipe, J. E.; Boyd, R. W. (1992). "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model". Physical Review A 46 (3): 1614–1629. doi:10.1103/physreva.46.1614. PMID 9908285. Bibcode1992PhRvA..46.1614S. 
  26. Fischer, G.; Boyd, R.; Gehr, R.; Jenekhe, S.; Osaheni, J.; Sipe, J.; Weller-Brophy, L. (1995). "Enhanced Nonlinear Optical Response of Composite Materials". Physical Review Letters 74 (10): 1871–1874. doi:10.1103/PhysRevLett.74.1871. PMID 10057778. Bibcode1995PhRvL..74.1871F. 
  27. Nelson, R. L.; Boyd, R. W. (1999). "Enhanced electro-optic response of layered composite materials". Applied Physics Letters 74 (17): 2417. doi:10.1063/1.123866. Bibcode1999ApPhL..74.2417N. http://pdfs.semanticscholar.org/1c2b/5c7d463d8d0fccd81a77379b62fa53714bd7.pdf. 
  28. Lepeshkin, N.; Schweinsberg, A.; Piredda, G.; Bennink, R.; Boyd, R. (2004). "Enhanced Nonlinear Optical Response of One-Dimensional Metal-Dielectric Photonic Crystals". Physical Review Letters 93 (12): 123902. doi:10.1103/PhysRevLett.93.123902. PMID 15447264. Bibcode2004PhRvL..93l3902L. 
  29. Heebner, J. E.; Boyd, R. W. (1999). "Enhanced all-optical switching by use of a nonlinear fiber ring resonator". Optics Letters 24 (12): 847–9. doi:10.1364/ol.24.000847. PMID 18073873. Bibcode1999OptL...24..847H. http://pdfs.semanticscholar.org/5124/4da0647de716245a3d70fb2ba05e007d29bc.pdf. 
  30. Heebner, J. E.; Lepeshkin, N. N.; Schweinsberg, A; Wicks, G. W.; Boyd, R. W.; Grover, R; Ho, P. T. (2004). "Enhanced linear and nonlinear optical phase response of Al Ga As microring resonators". Optics Letters 29 (7): 769–71. doi:10.1364/ol.29.000769. PMID 15072386. Bibcode2004OptL...29..769H. 
  31. Boyd, R. W.; Heebner, J. E. (2001). "Sensitive Disk Resonator Photonic Biosensor". Applied Optics 40 (31): 5742–7. doi:10.1364/AO.40.005742. PMID 18364865. Bibcode2001ApOpt..40.5742B. 
  32. Boyd, Robert. "Quantum Nonlinear Optics: Nonlinear Optics Meets the Quantum World". SPIE Newsroom. http://spie.org/newsroom/technical-articles/videos/pw16_plenaries-landing/pw16_plenary_boyd. 
  33. 33.0 33.1 R. W. Boyd (2008). Nonlinear Optics (Third ed.). Orlando: Academic Press. 
  34. 34.0 34.1 Boyd, R.; Raymer, M.; Narum, P.; Harter, D. (1981). "Four-wave parametric interactions in a strongly driven two-level system". Physical Review A 24 (1): 411–423. doi:10.1103/PhysRevA.24.411. Bibcode1981PhRvA..24..411B. 
  35. Harter, D.; Narum, P.; Raymer, M.; Boyd, R. (1981). "Four-Wave Parametric Amplification of Rabi Sidebands in Sodium". Physical Review Letters 46 (18): 1192–1195. doi:10.1103/PhysRevLett.46.1192. Bibcode1981PhRvL..46.1192H. 
  36. "The Royal Society of Canada welcomes 11 uOttawa researchers". University of Ottawa. https://research.uottawa.ca/news/royal-society-canada-welcomes-11-uottawa-researchers. 
  37. "Optica awards Robert Boyd the 2023 Frederic Ives Medal/Jarus W. Quinn Prize | Optica". https://www.optica.org/about/newsroom/news_releases/2023/february/optica_awards_robert_boyd_the_2023_frederic_ives_m/. 
  38. Bauer, T; Banzer, P; Karimi, E; Orlov, S; Rubano, A; Marrucci, L; Santamato, E; Boyd, R. W. et al. (2015). "Optics. Observation of optical polarization Möbius strips". Science 347 (6225): 964–6. doi:10.1126/science.1260635. PMID 25636796. Bibcode2015Sci...347..964B. 
  39. Franke-Arnold, S; Gibson, G; Boyd, R. W.; Padgett, M. J. (2011). "Rotary photon drag enhanced by a slow-light medium". Science 333 (6038): 65–7. doi:10.1126/science.1203984. PMID 21719672. Bibcode2011Sci...333...65F. 
  40. Leach, J; Jack, B; Romero, J; Jha, A. K.; Yao, A. M.; Franke-Arnold, S; Ireland, D. G.; Boyd, R. W. et al. (2010). "Quantum correlations in optical angle-orbital angular momentum variables". Science 329 (5992): 662–5. doi:10.1126/science.1190523. PMID 20689014. Bibcode2010Sci...329..662L. 
  41. Boyd, R. W.; Gauthier, D. J. (2009). "Controlling the velocity of light pulses". Science 326 (5956): 1074–7. doi:10.1126/science.1170885. PMID 19965419. Bibcode2009Sci...326.1074B. http://www.phy.duke.edu/~qelectron/pubs/Science326_1074_2009.pdf. 
  42. Boyd, R. W. (2008). "Physics. Let quantum mechanics improve your images". Science 321 (5888): 501–2. doi:10.1126/science.1161439. PMID 18653872. 
  43. Zhu, Z; Gauthier, D. J.; Boyd, R. W. (2007). "Stored light in an optical fiber via stimulated Brillouin scattering". Science 318 (5857): 1748–50. doi:10.1126/science.1149066. PMID 18079395. Bibcode2007Sci...318.1748Z. 
  44. Ralph, T. C.; Boyd, R. W. (2007). "PHYSICS. Better computing with photons". Science 318 (5854): 1251–2. doi:10.1126/science.1150968. PMID 18033871. https://zenodo.org/record/893149. 
  45. Boyd, R. W.; Chan, K. W.; O'Sullivan, M. N. (2007). "Physics. Quantum weirdness in the lab". Science 317 (5846): 1874–5. doi:10.1126/science.1148947. PMID 17901320. 
  46. Boyd, R. W.; Shi, Z (2012). "Optical physics: How to hide in time". Nature 481 (7379): 35–6. doi:10.1038/481035a. PMID 22222745. Bibcode2012Natur.481...35B. 
  47. Boyd, R. W.; Gauthier, D. J. (2006). "Photonics: Transparency on an optical chip". Nature 441 (7094): 701–2. doi:10.1038/441701a. PMID 16760963. Bibcode2006Natur.441..701B.