Biology:Gomphrena globosa

From HandWiki
Short description: Species of flowering plant

Gomphrena globosa
Gomphrena globosa All Around Purple 1zz.jpg
Purple-flowered form
Scientific classification edit
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Order: Caryophyllales
Family: Amaranthaceae
Genus: Gomphrena
Species:
G. globosa
Binomial name
Gomphrena globosa
Seeds of Gomphrena globosa

Gomphrena globosa, commonly known as globe amaranth, is an edible plant from the family Amaranthaceae. The round-shaped flower inflorescences are a visually dominant feature and cultivars have been propagated to exhibit shades of magenta, purple, red, orange, white, pink, and lilac. Within the flowerheads, the true flowers are small and inconspicuous.[1]

Gomphrena globosa is native to Central America including regions Panama, and Guatemala, but is now grown globally.[2] As a tropical annual plant, G. globosa blooms continuously throughout summer and early fall. It is very heat tolerant and fairly drought resistant, but grows best in full sun and regular moisture.[3] The plant fixes carbon through the C4 pathway.[4] At maturity, the flowerheads are approximately 4 centimetres (1.6 in) long and the plant grows up to 24 inches (61 cm) in height.[1]

Gomphrena globosa is an outcrossing species that is pollinated by butterflies, bees, and other insects. Floral volatiles likely play a significant role in the reproductive success of the plant by promoting the attraction of pollinators.[1]

Uses

In Hawaii, it is commonly used in long-lasting leis since it retains its shape and color after drying.

In Nepal, the flower is known commonly as makhamali ful and is used to make a garland during Bhai Tika, last day of Tihar festival. The garland is put around the brother's neck by their sister for protection. The slow withering character of the flower symbolizes a long life for the brother. The flower was included in the gift sent to United Kingdom by Jung Bahadur Rana in 1855. This flower is known as Rakta Mallika in Sanskrit.[5]

This plant is common in landscape design and cutting gardens for its vivid colors and color retention.

The edible plant G. globosa has been used in herbal medicine.[3][6][7][8]

The flowers of G. globosa are rich in betacyanins which have a wide range of applications as additives and supplements in the food industry, cosmetics, and livestock feed. Stable between pH 3 and 7, the betacyanins in globe amaranth are well suited to be used as natural food dye and have a red-violet color.[9]

Chemical properties

Phytochemicals

At least twenty-seven phytochemicals have been detected in G. globosa including six phenolic acid derivatives and fifteen specific flavonoids. The most abundant phenolic compounds present are flavonoids. A major phenol was found to be kaempferol 3-O-rutinoside based on chromatographic and mass spectrometry techniques.[2] Gomphrenol derivatives also contribute to phenolic content. Other flavanols include quercetin, kaempferol, and isorhamnetin derivatives.[3]

Betacyanins

The major betacyanins identified in globe amaranth are gomphrenin, isogomphrenin II, and isogomphrenin III.[2] These compounds are stored in vacuoles in the plant.[10]

Volatiles

Cultivars of G. globosa vary in the identity of floral volatiles but the volatile compounds of nonanal, decanal, geranyl acetone, and 4,8,12-tetradecatrienal, 5,9,13-trimethyl, were commonly detected by chromatography-mass spectrometry analysis. The cultivar ‘Fireworks’ has a high abundance of volatile esters such as geranyl propionate, geranyl isovalerate, benzyl isovalerate, and benzyl tiglate. The floral volatile emission of this cultivar of G. globosa was found to exhibit a diurnal pattern independent of light. Emission of floral volatiles can be regulated by phytohormone and defense signaling molecules. Experimentally, the ethylene inhibitor silver thiosulphate increased volatile emission of molecules derived from the terpenoid pathway. Defense signaling molecules can have temporal effects on floral volatile emission such as increased emission after four hours and reduced emission of volatiles after 24 hours in time studies analyzed with chromatography-mass spectrometry.[1]

Gallery

References

  1. 1.0 1.1 1.2 1.3 Jiang, Yifan; Zhao, Nan; Wang, Fei; Chen, Feng (2011-01-01). "Emission and Regulation of Volatile Chemicals from Globe Amaranth Flowers" (in en). Journal of the American Society for Horticultural Science 136 (1): 16–22. doi:10.21273/JASHS.136.1.16. ISSN 0003-1062. 
  2. 2.0 2.1 2.2 Roriz, Custódio Lobo; Barros, Lillian; Carvalho, Ana Maria; Santos-Buelga, Celestino; Ferreira, Isabel C.F.R. (2014). "Pterospartum tridentatum, Gomphrena globosa and Cymbopogon citratus: A phytochemical study focused on antioxidant compounds" (in en). Food Research International 62: 684–693. doi:10.1016/j.foodres.2014.04.036. https://bibliotecadigital.ipb.pt/bitstream/10198/10145/4/To_FRI_Revised.pdf. 
  3. 3.0 3.1 3.2 Silva, Luís R.; Valentão, Patrícia; Faria, Joana; Ferreres, Federico; Sousa, Carla; Gil-Izquierdo, Angel; Pinho, Brígida R.; Andrade, Paula B. (2012). "Phytochemical investigations and biological potential screening with cellular and non-cellular models of globe amaranth (Gomphrena globosaL.) inflorescences" (in en). Food Chemistry 135 (2): 756–763. doi:10.1016/j.foodchem.2012.05.015. PMID 22868155. 
  4. Herold, A.; Lewis, D. H.; Walker, D. A. (1976-05-01). "Sequestration of Cytoplasmic Orthophosphate by Mannose and Its Differential Effect on Photosynthetic Starch Synthesis in C3 and C4 Species" (in en). New Phytologist 76 (3): 397–407. doi:10.1111/j.1469-8137.1976.tb01475.x. ISSN 1469-8137. 
  5. संवाददाता, सफल खबर. "मखमली फूलको सांस्कृतिक महत्व" (in Nepali). https://www.safalkhabar.com/news/16808. 
  6. Mendes, John (1986). Cote ce Cote la: Trinidad & Tobago Dictionary. Arima, Trinidad. p. 7. 
  7. Lans, Cheryl (2007-03-15). "Ethnomedicines used in Trinidad and Tobago for reproductive problems". Journal of Ethnobiology and Ethnomedicine 3: 13. doi:10.1186/1746-4269-3-13. ISSN 1746-4269. PMID 17362507. 
  8. S., Bajaj, Y. P. (1994). Medicinal and Aromatic Plants VI. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 9783662303719. OCLC 840292441. 
  9. Roriz, Custódio Lobo; Barros, Lillian; Prieto, M.A.; Morales, Patricia; Ferreira, Isabel C.F.R. (2017). "Floral parts of Gomphrena globosa L. as a novel alternative source of betacyanins: Optimization of the extraction using response surface methodology" (in en). Food Chemistry 229: 223–234. doi:10.1016/j.foodchem.2017.02.073. PMID 28372168. http://bibliotecadigital.ipb.pt/bitstream/10198/14894/1/Roriz%2cC.L_Floral-parts-of-Gomphrena2017.pdf. 
  10. Tanaka, Yoshikazu; Sasaki, Nobuhiro; Ohmiya, Akemi (2008-05-01). "Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids" (in en). The Plant Journal 54 (4): 733–749. doi:10.1111/j.1365-313X.2008.03447.x. ISSN 1365-313X. PMID 18476875. 

Wikidata ☰ Q1200680 entry